Lu QIkENG,Yin Weiping.[J].数学年刊A辑,1980,1(1):115~129
THE SOLUTION OF THE CAUCHY PROBLEM FOR A WAVEEQUATION WITH VARIABLE COEFFICIENTS
Received:August 30, 1978  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
Lu QIkENG Institute of Mathematicsy Academia Sinica 
Yin Weiping University of Science and Technology of China 
Hits: 754
Download times: 907
中文摘要:
      
英文摘要:
      Let \[{\mathfrak{M}_k}\] denote the space of Lorentz witb. constant curvature: \[1 + {K_{\eta pq}}{x^p}{x^q}\] where K is a constant and \[\eta = ({\eta _{pq}})\]=diag [1,... 1,-1], We have considered the wave equation with variable coefficients \[\frac{\partial }{{\partial {x^j}}}(\sqrt {|\tilde g|} ){{\tilde g}^{jk}}\frac{{\partial u}}{{\partial {x^k}}}) = 0\] in \[{\mathfrak{M}_k}\] where \[|\tilde g| = |1 + {K_{\eta pq}}{x^p}{x^q}{|^{ - (n + 1)}},{{\tilde g}^{jk}} = (1 + {K_{\eta pq}}{x^p}{x^q})({\eta _{jk}} + K{x^j}{x^k})\] and found the explicit solution of the Cauchy problem for equation (1)
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.