PAN CHENGDONG.[J].数学年刊A辑,1980,1(1):149~160
A NEW MEAN VALUE THEOREM ANDITS APPLICATIONS
Received:December 17, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
PAN CHENGDONG Shandong University) 
Hits: 705
Download times: 894
中文摘要:
      
英文摘要:
      Let \[\pi (x;a,d,l) = \sum\limits_{\scriptstyleap \le x\hfill\atop\scriptstyleap \equiv l(\bmod {\kern 1pt} {\kern 1pt} d)\hfill} 1 and let f(a) be a real function,satisfying the condition \[\sum\limits_{n \le x} {|f(n)| \ll x{{\log }^{{\lambda _1}}}} x\],\[\sum\limits_{n \le x} {{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{d|n} {|f(d)|} \ll x{{\log }^{{\lambda _2}}}} x\] then for any A>0,we have \[\sum\limits_{d < {x^{\frac{1}{2}}}{{\log }^{ - B}}x} {\mathop {\max }\limits_{y < x} } \mathop {\max }\limits_{(l,d) = 1} |\sum\limits_{\scriptstylea \le {x^{1 - \varepsilon }}\hfill\atop \scriptstyle(a,d) = 1\hfill} {f(a)} (\pi (y;a,d,l) - \frac{{\pi (y;a,1,1)}}{{{\phi _d}}}| \ll \frac{x}{{{{\log }^A}x}}\] In this paper we use above estimation to prove the following results 1)let \[\Omega = \sum\limits_{\scriptstyle{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ({p_{1,2}})\hfill\atop {\scriptstyle{p_s} \le N/{p_1}{p_2}\hfill\atop \scriptstyleN - p = {p_1}{p_2}{p_3}\hfill}} 1 \] where N is a large even integer,and (p1,2) denotes the condition \[{N^{\frac{1}{{10}}}} < {p_1} \le {N^{\frac{1}{3}}} \le {p_2} \le {(\frac{N}{{{p_1}}})^{\frac{1}{2}}}\] then we have \[{\cal Q}(N) = \mathop \prod \limits_{p|N} \frac{{p - 1}}{{p - 2}}\mathop \prod \limits_{p > 2} (1 - \frac{1}{{{{(p - 1)}^2}}})\] let \[D(N) = \sum\limits_{N = {p_1} + {p_2}} 1 \] then we obtain \[7.928{\cal Q}(N)\frac{N}{{{{\log }^2}N}}\] 3)let \[1 \le y \le {x^{1 - s}}(0 < \varepsilon < 1)\],f(a)>0,and satisfying the condition(Δ),then we have \[\sum\limits_{\scriptstyleap \le x\hfill\atop \scriptstylea \le y\hfill} {f(a)d(ap - 1) \sim 2x\sum\limits_{d \le {x^{\frac{1}{2}}}} {\frac{1}{{\phi (d)}}} } \sum\limits_{a \le y} {\frac{{f(a)}}{{a\log \frac{x}{a}}}} \] 4)let \[{p_x}\]denote the largest prime factor of \[\mathop \prod \limits_{0 < p + a < x} (p + a)\] where a is a given non-zero integer. Hooley proved \[{p^x} > {x^\theta }\],when \[\theta < \frac{5}{8}\],the key of his prove is the estimation of the summation \[V(y) = \sum\limits_{\scriptstylep + a = kq\hfill\atop {\scriptstylep \le x - a\hfill\atop \scriptstyley < q < ry\hfill}} {\log q} \] where q denotes primes,and \[{x^{\frac{1}{2}}} < y < {x^{\frac{3}{4}}},1 < r < 2\] Using the Selberg sieve method ,we can turn the above estimation into the estimation of the follwing sum \[\sum\limits_{d \le {x^{\frac{1}{2}}}{{\log }^{ - B}}y} {\sum\limits_{k \le \frac{x}{y}} {\sum\limits_{\scriptstylekq \le x\hfill\atop \scriptstylekq \equiv a(\bmod {\kern 1pt} {\kern 1pt} {\kern 1pt} 4)\hfill} {\log q} } } \]
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.