DAI ZONGDUO,NI LUQUN,YANG JUNHUI,CHEN WENDE.[J].数学年刊A辑,1980,1(2):207~213 |
|
THE ESTIMATION OF THE CORRELATIONS OFA CLASS OF BINARY SEQUENCES |
Received:June 07, 1978 Revised:December 17, 1979 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 468 |
Download times: 574 |
中文摘要: |
|
英文摘要: |
Suppose a(n,m)is a binary sequence
\[\begin{gathered}
\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} = ({a_1},{a_2},...,{a_n}),{a_i} = 0{\kern 1pt} {\kern 1pt} {\kern 1pt} or{\kern 1pt} {\kern 1pt} {\kern 1pt} 1; \hfill \ m = \sum\limits_{i = 1}^n {{a_i}} ; \hfill \ \mathcal{T}(\tau ) = \sum\limits_{i = 1}^{n - \tau } {a{}_i} {a_{i + \tau }}; \hfill \ P(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{a} ) = \mathop {max}\limits_{1 \leqslant \tau \leqslant n - 1} \mathcal{T}(\tau ) \hfill \\
\end{gathered} \]
We call P(a) the correlation of the sequence a(n, m) . Given positive integers
n and m,七he binary sequence a(n,m) such that its P(a) is the smallest is called the
optimal sequence. It is useful in practice.
In this paper a lower bound of ihe correlation of the binary sequences a(n, m)
for given positive integers n and m is estimated. At the end of this paper, we listed,
as examples, several optimal sequences for n= 68, m= 30。 |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|