SHI YINGGUANG.[J].数学年刊A辑,1980,1(2):235~244
BEST SIMULTANEOUS Lp APPROXIMATION
Received:November 20, 1978  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
SHI YINGGUANG The Computing Centre, Academia Sinica 
Hits: 479
Download times: 557
中文摘要:
      
英文摘要:
      In this paper we discuss the exigtenoe of best simultaneous Lp approximation and give the characterization theorems of best simultaneous Lp approximation using the elements of an arbitrary quasioonvex set K in the space \[{L_p}(X,\sum ,\mu )\], A set \[K \subset {L_p}(X,\sum ,\mu )\] is called quasiconvex if for arbitrary elements \[{h_1},{h_2} \in K\] there exists a sequenoe \[{t_n} > 0\] (n = l, 2, ...), \[{t_n} > 0\]->0 (n—>∞) such that \[{t_n}{h_1} + (1 - {t_n}){h_2} \in \bar K(n = 1,2,...)\] where \[{\bar K}\] denotes a closure of K.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.