SUN YONGSHENG.[J].数学年刊A辑,1980,1(2):273~282
MEAN APPROXIMATION OF A PERIODIC FUNCTION BYTHE PARTIAL SUMS OF ITS FOURIER SERIES
Received:March 29, 1979  Revised:July 07, 1979
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
SUN YONGSHENG Beijing Normal University 
Hits: 476
Download times: 0
中文摘要:
      
英文摘要:
      Given a sequence of positive real numbers \[{\varepsilon _0},{\varepsilon _1},...,{\varepsilon _n},...\] which satisfy the conditions \[{\varepsilon _v} \to 0,{\varepsilon _v} - {\varepsilon _{v + 1}} \ge 0,{\varepsilon _v} - 2{\varepsilon _{v + 1}} + {\varepsilon _{v + 2}} \ge 0\] for v =0, 1, 2, ..., and a class L(s) of 2pi-periodic, L-integrable functions f(x) such that \[{E_n}{(f)_L} \le {\varepsilon _n}(n = 0,1,2,...)\], where \[{E_n}{(f)_L}\] is the best mean approximation of f(x) by trigonometrical polynomials of degree ≤n Let \[{S_n}(f)\] be the n-th partial sum of the Fourier series of f(x). It’s known that Oskolkov has proved \[\mathop {\sup }\limits_{f \in L(\varepsilon )} ||f - {S_n}{(f)_L}|| = \sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} \] where \[||f|{|_L} = \int_0^{2\pi } {|f(x)|} dx\] Oskolkov asked whether there is a single function \[{f_0}(x) \in L(s)\] for which the above relation is satisfied for all n, In this paper the following result is obtained. Theorem Let \[L(\varepsilon )\] be a class of 2pi-periodic, L-integrable functions as giyen above, then there exists a funotion \[{f_0}(x) \in L(\varepsilon )\] such that \[{{\tilde f}_0}(x) \in L(\varepsilon )\] and \[\begin{array}{l} \overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{{{\left\| {{f_0} - {S_n}({f_0})} \right\|}_L}}}{{\sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} }} \ge C > 0\\overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{{{\left\| {{{\tilde f}_0} - {S_n}({{\tilde f}_0})} \right\|}_L}}}{{\sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} }} \ge C > 0 \end{array}\] where C is an absolute constant. Some generalizations of the theorem are given.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.