JIANG FURU,GAO RUXI.[J].数学年刊A辑,1980,1(3-4):387~397 |
|
SINGULAR PERTURBATION PROBLEMS FOR A CLASSOF ELLIPTIC EQUATIONS OF SECOND ORDER ASDEGENERATED OPERATOR HAS SINGULAR POINTS |
Received:September 09, 1979 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 925 |
Download times: 4101 |
中文摘要: |
|
英文摘要: |
In this paper we study the first and tiie third boundary value problems for the elliptic equation
\[\begin{array}{l}
\varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1),
\end{array}\]
as the degenerated operator bas singular points, where
\[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\]
The uniformly valid asymptotic solutions of boundary value problems have been
obtained under the condition of
\[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\]
where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\). |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|