Hu Ke.[J].数学年刊A辑,1980,1(3-4):421~427 |
|
THROREMS OF DISTORTION FOR SCHLICHT FUNCTIONS |
Received:October 08, 1979 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 839 |
Download times: 0 |
中文摘要: |
|
英文摘要: |
Let \[f(z) = z + \sum\limits_{n = 1}^\infty {{a_n}{z^n} \in S} {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \log \frac{{f(z) - f(\xi )}}{{z - \xi }} - \frac{{z\xi }}{{f(z)f(\xi )}} = \sum\limits_{m,n = 1}^\infty {{d_{m,n}}{z^m}{\xi ^n},} \], we denote \[{f_v} = f({z_v})\] , \[\begin{array}{l}
{\varphi _\varepsilon }({z_u}{z_v}) = {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\frac{1}{{(1 - {z_u}{{\bar z}_v})}},\g_m^\varepsilon (z) = - {F_m}(\frac{1}{{f(z)}}) + \frac{1}{{{z^m}}} + \varepsilon {{\bar z}^m},
\end{array}\], where \({F_m}(t)\) is a Faber polynomial of degree m.
Theorem 1. If \[f(z) \in S{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{u,v = 1}^N {{A_{u,v}}{x_u}{{\bar x}_v} \ge 0} \] and then \[\begin{array}{l}
\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\exp \{ \alpha {F_l}({z_u},{z_v})\} \ \le \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} \varphi _\varepsilon ^\alpha ({z_u}{z_v})l = 1,2,3,
\end{array}\], where \[\begin{array}{l}
{F_1}({z_u},{z_v}) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} g_n^\varepsilon ({z_u})\bar g_n^\varepsilon ({z_v}),\{F_2}({z_u},{z_v}) = \frac{1}{{1 + {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}),\{F_3}({z_u},{z_v}) = \frac{1}{{1 - {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}).
\end{array}\] The \[F({z_u},{z_v}) = \frac{1}{2}{g_1}({z_u}){{\bar g}_2}({z_v})\] is due to Kungsun.
Theorem 2. If \(f(z) \in S\) ,then \[P(z) + \left| {\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {{\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}\frac{{{z_u}{z_v}}}{{{f_u}{f_v}}}} \right|}^\varepsilon }} \right| \le \sum\limits_{u,v = 1}^N {{\lambda _u}{{\bar \lambda }_v}} \frac{1}{{1 - {z_u}{{\bar z}_v}}}\], where \[\begin{array}{l}
P(z) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} {G_n}(z),\{G_n}(z) = {\left| {\left| {\sum\limits_{n = 1}^N {{\beta _u}({F_n}(\frac{1}{{f({z_u})}}) - \frac{1}{{z_u^n}})} } \right| - \left| {\sum\limits_{n = 1}^N {{\beta _u}z_u^n} } \right|} \right|^2},
\end{array}\], \(P(z) \equiv 0\) is due to Xia Daoxing. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|