Shi Yingguang.[J].数学年刊A辑,1980,1(3-4):477~484
SIMULTANEOUS BEST RATIONAL AlPPROXIMATION
Received:November 07, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
Shi Yingguang The Computing .Center, Cbmese Academy of Sciences) 
Hits: 1064
Download times: 0
中文摘要:
      
英文摘要:
      In this paper we discuss the problem of simulta-neons best rational approximation to a sequence of functions \({f_1},{f_2}, \cdots \in C[a,b]\), i. e. We wish to minimize the expression \({\left\| {{{\left\{ {\sum\limits_{j = 1}^\infty {{\lambda _j}{{\left| {{f_j} - R} \right|}^p}} } \right\}}^{\frac{1}{p}}}} \right\|_\infty }\) ,where \(R \in R_m^n[a,b],1 \le p < \infty ,{\lambda _j} > 0,\sum\limits_{j = 1}^\infty {{\lambda _j}} = 1\). For such a problem we have established the main theorems in the Chebyshey theory, which include the theorems of existence, alternation, de La Vallee Poussin, uniqueness, strong uniqueness as well as that of continuity of the best approximation operator.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.