王曦,刘祖汉,周玲.具不同分数阶扩散趋化模型的衰减估计[J].数学年刊A辑,2020,41(2):175~200 |
具不同分数阶扩散趋化模型的衰减估计 |
Temporal Decay for the Chemotaxis System Involving Different Fractional Powers in Higher Dimensions |
Received:November 12, 2017 Revised:April 04, 2018 |
DOI:10.16205/j.cnki.cama.2020.0013 |
中文关键词: 趋化模型, 分数阶 Laplacian, 古典解, 衰减估计 |
英文关键词:Chemotaxis system, Fractional Laplacian, Global classical solution, Temporal decay |
基金项目:国家自然科学基金(No.\,11771380, No.\,11401515) |
|
Hits: 342 |
Download times: 378 |
中文摘要: |
研究了生物学中具有分数阶扩散的 Keller-Segel模型. 该模型是由两个分数阶抛物方程和一个经典抛物方程组成. 在小初值条件下,利用[李大潜, 陈韵梅. 非线性发展方程 [M]. 北京: 科学出版社, 1999.]中的能量方法,作者建立了该模型古典解的全局存在性及最优的衰减估计, 得到了u, v 及 ?ψ高阶导数的衰减估计. |
英文摘要: |
This paper deals with a fractional Keller-Segel model arising from biology, which involves two parabolic equations with fractional Laplacians and a classical parabolic equation. The global existence result and the optimal temporal decay estimates of the classical solution to the fractional Keller-Segel system are obtained by pure energy method in [Li T, Chen Y. Nonlinear evolution equation, Beijing: Science Press, 1999 (in Chinese).] based on the assumption of smallness initial conditions. More precisely, the authors derive the optimal decay rates of the higher-order spatial derivatives ofu, v 及 ?ψ. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|