陈杰诚,李艳诘.沿平坦凸曲线Hilbert变换的L2有界性[J].数学年刊A辑,2020,41(2):221~232
沿平坦凸曲线Hilbert变换的L2有界性
L2 Boundedness of Hilbert Transform Along Convex Flat Curves
Received:April 06, 2016  Revised:January 05, 2017
DOI:10.16205/j.cnki.cama.2020.0016
中文关键词:  Hilbert变换, 双倍条件, 震荡积分
英文关键词:Hilbert transform, Doubling condition, Oscillatory integral
基金项目:国家自然科学基金(No.\,11471288, No.\,11671363)和浙江省自然科学基金(No. LY14A010015)
Author NameAffiliation
CHEN Jiecheng Department of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang, China. 
LI Yanjie Department of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang, China. 
Hits: 358
Download times: 416
中文摘要:
      考虑一类平坦凸曲线的Hilbert变换H_\gamma f(x)=\texttt{p.v.}\int_{-\infty}^{+\infty}f(x_1-t,x_2-\gamma(t))\frac{\rmd t}{t},\quad \forall x:=(x_1,x_2)\in \mathbb{R}^2.对于平坦凸曲线, 给出H_{\gamma}是L^2有界的一些必要条件.
英文摘要:
      The authors consider the Hilbert transform along a convex flat curve in mathbb{R}^2:H_\gamma f(x)=\texttt{p.v.}\int_{-\infty}^{+\infty} f(x_1-t,x_2-\gamma(t))\frac{\rmd t}{t},\quad \forall x:=(x_1,x_2)\in \mathbb{R}^2.They give some necessary conditions such that H_\gamma is bounded on L^2 for convex flat curves.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.