Apr.13 Sun.2025
郭 希,魏念念,向 妮,潘 岑.黎曼流形上具有Neumann边界条件的Monge-Amp`ere型方程[J].数学年刊A辑,2020,41(3):283~298
黎曼流形上具有Neumann边界条件的Monge-Amp`ere型方程
Monge-Amp`ere Type Equations with Neumann Boundary Conditions on Riemannian Manifolds
Received:December 10, 2018  
DOI:10.16205/j.cnki.cama.2020.0020
中文关键词:  二阶导数估计, Monge-Amp`ere 型方程, Neumann 问题, 黎曼流形
英文关键词:Second derivative estimate, Monge-Amp`ere type equation, Neumann problem, Riemannian manifold
基金项目:国家自然科学基金(No.,11971157, No.,11501184)和湖北省教育厅重点项目(No.,D20171004)
Author NameAffiliation
GUO Xi Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathmatics, Hubei University, Wuhan 430062, China. 
WEI Niannian Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathmatics, Hubei University, Wuhan 430062, China. 
XIANG Ni Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathmatics, Hubei University, Wuhan 430062, China. 
PAN Cen Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathmatics, Hubei University, Wuhan 430062, China. 
Hits: 532
Download times: 615
中文摘要:
      文章研究了黎曼流形上具有Neumann边界条件的Monge-Amp`ere型方程的全局正则性,并将其在欧几里得空间中的主要结论推广到了曲面空间.
英文摘要:
      In this paper, the authors consider the global regularity for Monge-Amp`ere type equations with the Neumann boundary conditions on Riemannian manifolds, and extend the main conclusions in the Euclidean flat space to curved spaces.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.