董平川,董 浙,姜海益.原子映射空间中的广义Hahn-Banach定理[J].数学年刊A辑,2020,41(4):399~408 |
原子映射空间中的广义Hahn-Banach定理 |
Generalized Hahn-Banach Theorem in Nuclear Mapping Spaces |
Received:February 27, 2019 Revised:March 29, 2020 |
DOI:10.16205/j.cnki.cama.2020.0028 |
中文关键词: Hahn-Banach定理, 原子映射空间, 内射性, 有限可表示性 |
英文关键词:Hahn-Banach theorem, Nuclear mapping space, Injectivity, Finite representability |
基金项目:国家自然科学基金(No.11871423) |
Author Name | Affiliation | DONG Pingchuan | Department of Mathematics, New York University, New York, NY 10012-1110,USA. | DONG Zhe | Corresponding Author. School of Mathematical Sciences, Zhejiang University,Hangzhou 310027, China. | JIANG Haiyi | School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China. |
|
Hits: 711 |
Download times: 559 |
中文摘要: |
经典的Hahn-Banach定理告诉读者在有界映射空间(B(.,.), |cdot|)中mathbb{C具有内射性. 在第二节中主要研究在原子映射空间(n^{B}(cdot, cdot), nu^{B})中的内射性.作者得到任意有限维Banach空间在原子映射空间(n^{B}(cdot, cdot), nu^{B})中都是内射的. 这可以看作(n^{B}(cdot, cdot), nu^{B})中的广义Hahn-Banach定理. 在经典的Banach空间理论中, 众所周知一个Banach空间E在(B(cdot, cdot), |cdot|)中具有{ell_{1}^{n}}_{ninmathbb{N}有限可表示性当且仅当E同构于某个超积prodell_{1}^{n(alpha)的子空间. 作为第二节的一个应用,第三节中作者研究了在原子映射空间(n^{B}(cdot, cdot), nu^{B})中的{ell_{1}^{n}}_{ninmathbb{N}有限可表示性. 作者得到 mathbb{C是唯一在原子映射空间(n^{B}(cdot, cdot), nu^{B})中具有{ell_{1}^{n}}_{ninmathbb{N}有限可表示性的Banach空间. 这与Banach空间理论中的经典结果是迥然不同的. |
英文摘要: |
lassical Hahn-Banach theorem says that C is injective in the system of bounded mapping spaces (B(·, ·), k·k). It is the key initial ingredient of functional analysis. In Section 2 the authors mainly investigate its analogue in the system of nuclear mapping spaces 408 t + D A v 41 (N B(·, ·), νB). The authors obtain that any finite-dimensional Banach space is injective in the system (N B(·, ·), νB). This can be considered as the generalized Hahn-Banach theorem in the system (N B(·, ·), νB). In the classical Banach space theory, a Banach space E is finitely representable in {?n1 }n∈N in the system (B(·, ·), k · k) if and only if E is isometric to a subspace of some ultraproduct Q ?n(α)1 . As one interesting application of Section 2, in Section 3 they study the finite representability in {?n1 }n∈N in the system (N B(·, ·), νB). They obtain that C is the unique Banach space which is finitely representable in {?n1 }n∈N in the system (N B(·, ·), νB). This is quite strange and different from the classical result in Banach space theory. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|