Apr.14 Mon.2025
罗家贵,费双林,李 垣.与马猜想有关的一类不定方程[J].数学年刊A辑,2021,42(2):229~236
与马猜想有关的一类不定方程
On Some Equations Related to Ma’s Conjecture
Received:August 13, 2018  
DOI:10.16205/j.cnki.cama.2021.0018
中文关键词:  McFarland's猜想, 丢番图方程, 基本解
英文关键词:McFarland’conjecture, Diophantine equations, Fundamental solution
基金项目:国家自然科学基金 (No.,10571180) 和四川省教育厅重大培育项目(No.,16ZA0173)
Author NameAffiliation
LUO Jiagui School of Mathematics and Information, China West Normal University, Nanchong 637009, Sichuan, China. 
FEI Shuanglin School of Mathematics and Information, China West Normal University, Nanchong 637009, Sichuan, China. 
LI Yuan School of Mathematics and Information, China West Normal University, Nanchong 637009, Sichuan, China. 
Hits: 1259
Download times: 1119
中文摘要:
      设p是奇素数, b,t,rin{rm N}. 1992 年, 马少麟猜想丢番图方程 x^2=2^{2b+2}p^{2t}-2^{b+2}p^{t+r}+1有唯一的正整数解(x,b,p,t,r)=(49,3,5,1,2), 并且证明了这个猜想蕴含McFarland关于乘子为-1 的阿贝尔差集的猜想.在[Ma S L, MaFarland'conjecture on Abelian difference sets with multiplier-1[J]. {it Designs, Codes and Cryptography,} 1992, 1:321--332.]中, 马少麟证明了: 若tgeq r,则丢番图方程x^2=2^{2b+2}p^{2t}-2^{b+2}p^{t+r}+1没有正整数解. 本文证明了: 若a>1是奇数,tgeq r, 那么丢番图方程x^2=2^{2b+2}a^{2t}-2^{b+2}a^{t+r}+1的正整数解由t=r=1, x+asqrt{2^{b+2}(2^b-1)}=(2^{b+1}-1+sqrt{2^{b+2}(2^b-1)})^{n}给出, 其中n为奇数.作者也证明了: 若p是奇素数, 则(x,b,p,t,r)=(7,3,5,1,2)是丢番图方程x^4=2^{2b+2}p^{2t}-2^{b+2}p^{t+r}+1的唯一正整数解.
英文摘要:
      Let p be an odd prime and b, t, r ∈ N. In 1992, Ma conjectured that (x, b, p, t, r) =(49, 3, 5, 1, 2) is the only positive integer solution of equation x2 = 22b+2p2t ? 2b+2pt+r + 1.And Ma proved that the conjecture implies McFarland’s conjecture on Abelian difference sets with multiplier-1. In [Ma S L, MaFarland’conjecture on Abelian difference sets with multiplier-1 [J]. Designs, Codes and Cryptography, 1992, 1:321–332.], Ma proved that equation x2 = 22b+2p2t ? 2b+2pt+r + 1 had no positive integer solution if t > r. In the present paper, the authors prove that the positive integer solutions of Diophantine equation x2 = 22b+2a2t ? 2b+2at+r + 1 with a is an odd > 1 and t > r are given by t = r = 1 and x + ap2b+2(2b ? 1) = (2b+1 ? 1 + p2b+2(2b ? 1))n for some odd positive integer n. They also prove that the only positive integer solution of Diophantine equation x4 = 22b+2p2t ? 2b+2pt+r + 1 with p is an odd prime and x, b, t, r ∈ N is given by (x, b, p, t, r) = (7, 3, 5, 1, 2).
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.