白瑞蒲,吴婴丽.具有β(L)=m-3的m-维非交换3-李代数的分类*[J].数学年刊A辑,2021,42(3):259~268
具有β(L)=m-3的m-维非交换3-李代数的分类*
The Classification of m-Dim Noncommutative 3-Lie Algebras with β(L) = m − 3
Received:February 25, 2020  Revised:December 12, 2020
DOI:10.16205/j.cnki.cama.2021.0020
中文关键词:  3-李代数, 导代数, 中心
英文关键词:3-Lie algebra, Derivation algebra, Center
基金项目:河北省自然科学基金(No.20182011126)
Author NameAffiliation
BAI Ruipu College of Mathematics and Information Science, Hebei University, Baoding 071002, Hebei, China
Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, Baoding 071002, Hebei, China. 
WU Yingli College of Mathematics and Information Science, Hebei University, Baoding 071002, Hebei, China
Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, Baoding 071002, Hebei, China. 
Hits: 549
Download times: 433
中文摘要:
      对特征零域F上具有β(L)=m-3的m-维非交换3-李代数的结构进行了分类, 且给出了每一类3-李代数的具体乘法结构.证明了满足β(L)=m-3且中心含在导代数的非交换3-李代数的维数小于等于11,大于等于5, 且导代数维数等于1时的3-李代数仅有两类, 导代数维数等于2 时有24类.
英文摘要:
      m-Dimensional noncommutative 3-Lie algebras with β(L) = m- 3 over a field of characteristic zero are classified, and the exact multiplications are provided. It is proved that if the center of L is contained in L1, then 5 6 m 6 11. And in the cases dim L1 = 1 and 2, there exist only 2 classes and 24 classes non-isomorphic 3-Lie algebras, respectively.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.