杨刘.多复变整函数与其关于全导数的微分多项式*[J].数学年刊A辑,2021,42(4):349~358
多复变整函数与其关于全导数的微分多项式*
Entire Function of Several Complex Variables and Its Differential Polynomial on Total Derivatives
Received:April 25, 2020  Revised:August 22, 2021
DOI:10.16205/j.cnki.cama.2021.0027
中文关键词:  整函数, 全导数, 分担值, 唯一性
英文关键词:Entire function, Total derivative, Sharing value, Uniqueness theorem
基金项目:
Author NameAffiliation
YANG Liu School of Mathematics and Physics, Anhui University of Technology, Maanshan 243032, Anhui, China. 
Hits: 1612
Download times: 1591
中文摘要:
      本文证明如下定理: 设f为Cn上的一个非常数整函数,LD(f) = akDkf +ak?1Dk?1f +· · · + a1Df + a0f,其中aj ∈ C, ak ≠ 0, Dj f是f的j阶全导数(j=1,2, · · ·,k).若f与LD(f)两个有穷的CM分担值, 则f=LD(f).
英文摘要:
      In this paper, the author proves the following theorem: If a nonconstant entire function f and its differential polynomial LD(f) share two distinct CM values, then f ≡ LD(f), where LD(f)=akDkf +ak?1Dk?1f +· · · + a1Df + a0f,with aj ∈ C, ak ≠ 0, and Dj f is the j-th order total derivative of f, j = 1, 2, · · · , k.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.