吕晓东.两个素数平方、四个素数立方和2的整数幂*[J].数学年刊A辑,2022,43(1):103~112 |
两个素数平方、四个素数立方和2的整数幂* |
Two Prime Squares, Four Prime Cubes and Powers of 2 |
Received:October 09, 2019 Revised:September 25, 2021 |
DOI:10.16205/j.cnki.cama.2022.0007 |
中文关键词: Waring-Goldbach 问题, 圆法, 2的正整数幂 |
英文关键词:Waring-Goldbach problem, Circle method, Powers of 2 |
基金项目:中国博士后科学基金 (No.2017M621829), 江苏省博士后科学基金(No.1701142C)和江苏省高校自然科学研究项目(No.18KJB110032) |
|
Hits: 1110 |
Download times: 1070 |
中文摘要: |
本文中, 作者考虑了 Linnik 型的非齐次幂的Waring-Goldbach问题.具体地说, 作者证明了所有充分大的偶数都可以表示成两个素数的平方、四个素数的立方和18个2的正整数幂之和的形式.这改进了Zhao的结果, 即需要43个2的正整数幂. |
英文摘要: |
The author considers Linnik's type of the Waring-Goldbach problem with unequal powers of primes. In particular,he shows that every sufficiently large even integer can be represented as a sum of two squares of primes,four cubes of primes and 18 powers of 2. This improves Zhao's result, which 43 powers of 2 is acceptable. |
View Full Text View/Add Comment Download reader |
Close |