Apr.12 Sat.2025
李敏,吴行平,唐春雷.含有陡峭势阱和凹凸非线性项的Kirchhoff型问题的多重正解*[J].数学年刊A辑,2022,43(3):263~282
含有陡峭势阱和凹凸非线性项的Kirchhoff型问题的多重正解*
Multiple Positive Solutions for Kirchhoff-Type Problems with Steep Potential Well and Concave-Convex Nonlinearities
Received:January 25, 2021  Revised:March 01, 2022
DOI:10.16205/j.cnki.cama.2022.0018
中文关键词:  Kirchhoff 型问题, 凹凸非线性项, 陡峭势阱, Nehari 流形
英文关键词:Kirchhoff type problems, Concave-Convex nonlinearities, Steep potential well, Nehari manifold
基金项目:国家自然科学基金(No.11971393)
Author NameAffiliation
LI Min School of Mathematics and Statistics, Southwest University, Chongqing 400715,China
College of Basic Education, Chongqing Industry & Trade Polytechnic,Chongqing 408000, China. 
WU Xingping Corresponding author. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China. 
TANG Chunlei School of Mathematics and Statistics, Southwest University, Chongqing 400715,China. 
Hits: 769
Download times: 647
中文摘要:
      在这篇文章中, 作者研究涉及凹凸非线性项的Kirchhoff型问题-(a + b ∫R3|▽u|2dx) Δu + λV (x)u = μf(x)|u|q?2u + |u|p?2u, x ∈ R3,u ∈ H1(R3),其中a,b > 0 是常数, λ, μ > 0 是参数, 1 < q < 2, 4 < p < 6 且 V 是一个非负连续位势. 在f(x) 和 V 的合适条件下,此问题正解的存在性和集中性能够通过Nehari 流形和Ekeland 变分原理得到.
英文摘要:
      In this paper, the authors research the following Kirchhoff type problem involving concave-convex nonlinearities ? (a + b ZR3|▽u|2dx) Δu + λV (x)u = μf(x)|u|q?2u + |u|p?2u, x ∈ R3,u ∈ H1(R3),where a, b > 0 are constants, λ, μ > 0 are parameters, 1 < q < 2, 4 < p < 6 and V is a nonnegative continuous potential. Under some suitable assumptions on f(x) and V ,the existence and concentration of positive solutions to this problem are obtained by using Nehari manifold and Ekeland variational principle.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.