程美芳,刘慧慧,肖诚诚.某类振荡积分算子在Lebesgue空间及Wiener共合空间上的映射性质*[J].数学年刊A辑,2022,43(3):301~312
某类振荡积分算子在Lebesgue空间及Wiener共合空间上的映射性质*
Mapping Properties of Certain Oscillatory Integral on Lebesgue and Wiener Amalgam Spaces
Received:October 29, 2020  Revised:November 16, 2021
DOI:10.16205/j.cnki.cama.2022.0020
中文关键词:  Wiener共合空间, Lebesgue空间, 振荡积分算子, 调幅函数空间
英文关键词:Wiener amalgam spaces, Lebesgue spaces, Oscillatory integral operator, Modulation spaces
基金项目:国家自然科学基金 (No.11201003, No.11771223) 和安徽省高校自然科学基金(No.KJ2017ZD27)
Author NameAffiliation
CHENG Meifang Corresponding author. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, Anhui, China. 
LIU Huihui College of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, Anhui, China. 
XIAO Chengcheng School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002,Anhui, China. 
Hits: 919
Download times: 645
中文摘要:
      假设 β1 > 3α1 > 0, β2 > 3α2 > 0,给定函数f(x) ∈ S(R3), 定义算子Tα,β如下:Tα,βf(x,y,z) = p.v.ZTQ2f(x- t, y-s, z-γ(t)h(s)) e-2πit1 s2/t1+α1 s1+α2dtds.本文主要考虑如上定义的算子Tα,β在Lebesgue空间Lp(R3)及Wiener共合空间W(FLp, Lq)(R3)上的有界性. 这里 Q2 = [0, 1] × [0, 1], γ(t), h(s)满足适当的条件.作为应用, 本文还考虑了带粗糙核的奇异积分算子在乘积空间上的有界性.
英文摘要:
      Suppose β1 > 3α1 > 0, β2 > 3α2 > 0. In this paper, the authors mainly consider the mapping properties of the oscillatory integral operator Tα,β defined on the Schwartz function spaces S(R3) by Tα,βf(x,y,z) = p.v.ZTQ2p.v.ZTQ2f(x- t, y-s, z-γ(t)h(s)) e-2πit1 s2/t1+α1 s1+α2dtds. on Lebesgue spaces Lp(R3) and Wiener amalgam spacesW(FLp, Lq)(R3), where Q2 = [0, 1] × [0, 1] and γ(t), h(s) satisfy some appropriate conditions. As applications, they also investigate the boundedness of a rough singular integral operator on the product spaces.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.