王冠翔,张教根.关于齐次四元Monge-Amp`ere方程的一些注记*[J].数学年刊A辑,2022,43(4):445~454
关于齐次四元Monge-Amp`ere方程的一些注记*
Some Remarks on the Homogeneous Quaternionic Monge-Amp`ere Equations
Received:December 07, 2020  Revised:October 24, 2022
DOI:10.16205/j.cnki.cama.2022.0029
中文关键词:  齐次四元Monge-Amp`ere方程, 极大性, 多重次调和
英文关键词:Homogeneous quaternionic Monge-Amp`ere equations, Maximality,Plurisubharmonic
基金项目:中国博士后面上项目(No.2022M713057)和中国科学技术大学青年创新基金(No.WK0010000072)
Author NameAffiliation
WANG Guanxiang School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China. 
ZHANG Jiaogen Corresponding author. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China. 
Hits: 1130
Download times: 1255
中文摘要:
      本文考虑了四元数空间Hn中齐次四元Monge-Amp`ere方程的狄利克雷问题解的正则性.首先,当区域是边界为 C1,1 的强拟凸域时, 作者给出了解的Lipschitz估计. 其次, 考虑了四元 Monge-Amp`ere 算子的收敛性. 最后,讨论了齐次四元 Monge-Amp`ere 方程的粘性次解与F-次调和函数之间的关系.
英文摘要:
      In this paper, the authors consider the regularity of Dirichlet problem for homogeneous quaternionic Monge-Amp`ere equations in the quaternionic space Hn. The authors firstly derive a priori Lipschitz estimates when the strictly pseudoconvex domain and the boundary condition satisfy the C1,1 regularity. Secondly, the authors consider a convergence result of the quaternionic Monge-Amp`ere operators. Finally, the authors study the relations between the viscosity subsolutions of homogeneous quaternionic Monge-Amp`ere equations and F-subharmonic functions.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.