黄旭凤,蒲志林.具有动态边界条件的Cahn-Hilliard-Navier-Stokes系统解的渐近行为*[J].数学年刊A辑,2023,44(1):1~16
具有动态边界条件的Cahn-Hilliard-Navier-Stokes系统解的渐近行为*
Asymptotic Behavior of Solutions for the CahnHilliard-Navier-Stokes System with Dynamic Boundary Conditions
Received:June 25, 2022  Revised:November 23, 2022
DOI:10.16205/j.cnki.cama.2023.0001
中文关键词:  Cahn-Hilliard-Navier-Stokes系统, 动态边界条件, 弱解, 全局吸引子
英文关键词:Cahn-Hilliard-Navier-Stokes system, Dynamic boundary conditions, Weak solution, Global attractor
基金项目:四川省科技厅科学研究项目(No.22CXTD0029)
Author NameAffiliation
HUANG Xufeng School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066,China. 
PU Zhilin School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066,China. 
Hits: 1041
Download times: 1410
中文摘要:
      Cahn-Hilliard-Navier-Stokes系统是描述两种互不相溶且不可压缩流体演化的著名界面系统.本文主要研究一般非线性条件下具有动态边界的Cahn-Hilliard-Navier-Stokes系统解的适定性及长时间行为,证明了弱解的整体存在性和唯一性, 建立了在H X VI中全局吸引子的存在性.
英文摘要:
      Cahn-Hilliard-Navier-Stokes system is a well-known interface system that describes the evolution of two immiscible incompressible fluids. The authors’ aim in this paper is to study the well-posedness and longtime behavior of solutions for the Cahn-HilliardNavier-Stokes system with dynamic boundary conditions, the global existence, uniqueness of weak solutions for this system are proved and the existence of a global attractor in H X VI is also established.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.