汪玉洁,李 霞.非紧空间上折现Hamilton-Jacobi方程粘性解的存在性讨论*[J].数学年刊A辑,2023,44(1):17~28
非紧空间上折现Hamilton-Jacobi方程粘性解的存在性讨论*
The Discussion on the Existence of the Viscosity Solution of the Discounted Hamilton-Jacobi Equation in Non-compact Space
Received:November 15, 2021  Revised:December 07, 2022
DOI:10.16205/j.cnki.cama.2023.0002
中文关键词:  折现Hamilton-Jacobi方程 , 粘性解, 有限
英文关键词:Discounted Hamilton-Jacobi equation, Viscosity solution, Finite
基金项目:国家自然科学基金(No.11971344)和江苏省研究生科研创新计划项目(No.KYCX20-2746)
Author NameAffiliation
WANG Yujie School of Mathematical Sciences, Suzhou University of Science and Technology,Suzhou 215009, Jiangsu, China. 
LI Xia School of Mathematical Sciences, Suzhou University of Science and Technology,Suzhou 215009, Jiangsu, China. 
Hits: 720
Download times: 1239
中文摘要:
      当底空间紧时, 初始函数为连续函数的Lax-Oleinik型粘性解是局部半凹的,所以是相应的Hamilton-Jacobi\ (以下简称为H-J) 演化方程(简称为接触H-J方程)的粘性解.当底空间非紧时, 对于H-J方程和接触H-J方程, 其Lax-Oleinik型解的下确界未必能取到.文章将探讨在非紧空间上, 折现H-J方程粘性解有限性的条件, 并给出了在此假设下粘性解的表达式.
英文摘要:
      If the base space is compact, the viscosity solution with a continuous initial function is locally semi-concave, so it is the viscosity solution of the corresponding Hamilton-Jacobi (H-J for short) evolutionary equation (contact H-J equation for short). If the base space is non-compact, the infimum of the Lax-Oleinik solution of the H-J equation or the contact H-J equation may not be obtained. In this paper, the authors discuss the condition of the viscosity solution of the discounted H-J equation being finite in non-compact space,and give the expression of the viscosity solution under this assumption.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.