张美娟,毕航达,张小玥.临界Galton-Watson过程条件极限定理的构造性证明[J].数学年刊A辑,2023,44(1):39~56
临界Galton-Watson过程条件极限定理的构造性证明
Conceptual Proofs of Conditional Limit Theorems for Critical Galton-Watson Processes
Received:October 08, 2021  Revised:October 12, 2022
DOI:10.16205/j.cnki.cama.2023.0004
中文关键词:  Galton-Watson 过程, 条件极限分布, 最近共同祖先, 指数分布
英文关键词:Galton-Watson process, Conditional limit distribution, The most recent common ancestor, Exponential distribution
基金项目:国家自然科学基金 (No.12271538, No.11971062, No.12101419),国家留学基金, 中央财经大学新兴交叉学科建设项目和中央财经大学学科建设项目
Author NameAffiliation
ZHANG Meijuan Central University of Finance and Economics, Beijing 100081, China. 
BI Hangda Corresponding author. The high school affiliated to Beijing Normal University,Beijing 100052, China. 
ZHANG Xiaoyue Capital University of Economics and Business, Beijing 100070, China. 
Hits: 784
Download times: 1792
中文摘要:
      对临界Galton-Watson 过程,本文通过精细地构造条件Galton-Watson 树的方法, 在第n代不灭绝的条件下研究第nt代粒子数Znt的构造性性质(0ntl和Zntr.本文分别给出了{Zntl/n│Zn>0 }和{Zntr/n│Zn>0} 的条件极限性质,用概率的方法部分地解释了Spitzer, Lamperti和Ney的经典条件极限的结果. 最后还给出了最近共同祖先的条件分布.
英文摘要:
      Consider critical Galton-Watson processes. The authors study the constructive properties of the number of particles in the nt-th generation, which is denoted by Znt with fixed 0 < t < 1, conditioned on non-extinction of the n-th generation. The proofs are based on constructing a conditioned Galton-Watson tree. By constructing a distinguished branch,particles in the nt-th generation of the conditioned Galton-Waltson tree can be divided into two parts, denoted by Zntl and Zntr.The conditional asymptotic properties of {Zntl/n│Zn>0 }and {Zntr/n│Zn>0} are obtained separately. This approach partly explains the classical conditional limit result of Spitzer, Lamperti and Ney by a probabilistic method. At last,the authors give the conditional distribution of the most recent common ancestor.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.