王晓丽,阿拉坦仓.n × n 上三角算子矩阵的单值扩张性以及应用*[J].数学年刊A辑,2023,44(1):57~70
n × n 上三角算子矩阵的单值扩张性以及应用*
The Single-Valued Extension Property for n × n Upper Triangular Operator Matrices and Its Application
Received:April 03, 2021  Revised:December 07, 2022
DOI:10.16205/j.cnki.cama.2023.0005
中文关键词:  单值扩张性, 算子矩阵, 局部谱, 解析函数, 扰动
英文关键词:Single-valued extension property, Operator matrix, Local spectrum, Analytic function, Perturbation
基金项目:国家自然科学基金(No.11761029), 内蒙古自治区自然科学基金重点项目(No.2022ZD05)和内蒙古高等学校科学技术项目(No.NJZY22323)
Author NameAffiliation
WANG Xiaoli School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhhot 010070, China. 
Alatancang Applied Mathematics Center of Inner Mongolia, Inner Mongolia Normal University, Huhhot 010022, China. 
Hits: 705
Download times: 1186
中文摘要:
      设Xi是无穷维复Banach空间, L(Xj,Xi)是Xj到Xi上的有界线性算子全体.考虑 n × n 上三角算子矩阵T=(Tij)1≤j≤n, 其中Tij L(Xj,Xi),1≤j≤n; Tij=0, i>j.本文研究了T的单值扩张性, 通过考察集合S(T)={λ∈C}: T在点λ没有SVEP},证明了S(T)在i=1 ? nS(Ti)中退化,进而给出等式S(T)=i=1 ? n S(Ti)成立的条件. 同时, 考察了T的单值扩张性扰动,得到了S(T)保持对角稳定时Ti所需的条件并予以证明, 同时举例说明这些条件的合理性.最后, 给出单值扩张性关于谱σ(T)和局部谱σT (x)的应用, 得到了谱扰动和局部谱扰动不变的新条件.
英文摘要:
      Let Xi be infinite-dimensional complex Banach spaces, L(Xj , Xi) be the spaces of all bounded operators from Xj to Xi , 1≤j≤n. Consider the n × n upper triangular operator matrix T = (Tij )1≤j≤n, where Tij ∈ L(Xj , Xi), 1≤j≤n, Tij = 0 for i > j. In this paper, the authors investigate the single-valued extension property for T and consider the set S(T ) = {λ ∈ C : T does not have SVEP at λ}. The authors show how S(T ) shrinks from nSi=1S(Tii). Further, the authors develop some sufficient conditions for the equality S(T ) = nS i=1 S(Tii). Also, the authors consider the perturbation for the SVEP of T and obtain some conditions. Some examples are given to illustrate these results. At the end, the authors apply the obtained results to the spectrum σ(T ) and the local spectrum σT (x), and give some new conditions for the perturbation of σ(T ) and σT (x).
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.