程永宽,沈尧天.含参数拟线性薛定谔方程的特征值问题*[J].数学年刊A辑,2023,44(2):113~120
含参数拟线性薛定谔方程的特征值问题*
The Eigenvalue Problem for a Class of Quasilinear Schr¨odinger Equations with a Parameter
Received:September 06, 2022  Revised:March 21, 2023
DOI:10.16205/j.cnki.cama.2023.0009
中文关键词:  薛定谔方程, L 估计, 特征值问题
英文关键词:Schr¨odinger equations, L estimate, Eigenvalue problem
基金项目:广东省基础与应用基础研究基金 (No.2020A1515010338)
Author NameAffiliation
CHENG Yongkuan School of Mathematics, South China University of Technology, Guangzhou 510640, China. 
SHEN Yaotian Corresponding author. School of Mathematics, South China University of Technology, Guangzhou 510640, China. 
Hits: 1136
Download times: 1917
中文摘要:
      本文考虑如下拟线性薛定谔方程:-△u + κu/2△u2 = λ|u|p?2u, x ∈ ?,这里 u ∈ H10(?), 2 < p < 2*, κ > 0, N > 3 且? 是有界区域.结合变分方法和摄动讨论, 作者证明了存在常数κ0 > 0, 使得对任何的κ ∈ (0, κ0)这类特征值问题有解 (λ, u). 特别地,如果限制 |u|pp = α, 作者发现对任何的 κ > 0 存在 α0 > 0,使得在 α < α0 时, 该特征值问题的解总是存在的.此外, 作者采用不同于 Morse迭代的方法构造出了常数κ0 和 α0 的精确表达式.
英文摘要:
      This paper considers a class of quasilinear Schr¨odinger equations of the form -△u + κu/2△u2 = λ|u|p?2u, x ∈ ?, where u ∈ H10(?), 2 < p < 2*, κ > 0, N > 3 and ? is a bounded domain. Combining variational approaches with perturbation arguments, the authors prove that there exists κ0 > 0 such that for any κ ∈ (0, κ0) this eigenvalue problem admits a solution (λ, u). More interestingly, if the eigenvalue problem is restricted to |u|pp = α, the authors observe that for any κ > 0, there exists α0 > 0 such that the solution of the eigenvalue problem exists under the situation of α < α0. Particularly, the authors construct the accurate expressions of κ0 and α0 and, different from the Morse estimate, the authors use another method to show the L estimate.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.