汪璇,田凯鸿.具有结构阻尼的Kirchhoff型波方程的时间依赖全局吸引子*[J].数学年刊A辑,2023,44(2):163~198
具有结构阻尼的Kirchhoff型波方程的时间依赖全局吸引子*
The Time-Dependent Global Attractors for Kirchhoff-Type Wave Equation with Structural Damping
Received:April 29, 2022  Revised:December 28, 2022
DOI:10.16205/j.cnki.cama.2023.0013
中文关键词:  Kirchhoff型波方程, 时间依赖吸引子, 结构阻尼, 正则性
英文关键词:Kirchhoff-Type wave equation, Time-Dependent global attractor,Structural damping, Regularity
基金项目:国家自然科学基金(No.111961060, No.11961059, No.12061062)
Author NameAffiliation
WANG Xuan College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China. 
TIAN Kaihong Corresponding author. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China. 
Hits: 1022
Download times: 1761
中文摘要:
      本文讨论了具有结构阻尼的Kirchhoff型波方程:ε(t)?t2u - M(||?u||2)?u + (-?)γ?tu + f(u) = g(x), γ ∈(1/2, 1)解的适定性和长时间行为. 当非线性项f的增长指数满足2 6 p 6 3 + 2γ时,借助Faedo-Galerkin逼近方法和渐近正则估计, 得到了解的适定性和正则性. 继而利用收缩函数方法验证解过程的渐近紧性.最终证明了时间依赖全局吸引子在自然能量空间H01(?) × L2(?)中的的存在性.
英文摘要:
      In this paper, the authors study the well-posedness and the longtime dynamics of the solutions to the Kirchhoff wave equation with structural damping: ε(t)?t2u - M(||?u||2)?u + (-?)γ?tu + f(u) = g(x), γ ∈1/2, 1When the growth exponent satisfies 1 6 p 6 3 + 2γ, firstly, by use of Faedo-Galerkin approximation method and asymptotically regular estimate technique,the well-posedness and regularity of solutions are established. Secondly, the asymptotic compactness of the solution process is proved via the method of contraction function. Finally,the existence of time-dependent global attractor is obtained in the natural energy space H01(?) × L2(?)
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.