郭雨婷,张学军.单位球上正规权 Dirichlet型空间上的一种积分算子*[J].数学年刊A辑,2023,44(3):255~266
单位球上正规权 Dirichlet型空间上的一种积分算子*
A Kind of Integral Operator on Normal Weight Dirichlet Type Space in the Unit Ball
Received:October 25, 2022  Revised:April 23, 2023
DOI:10.16205/j.cnki.cama.2023.0018
中文关键词:  复合 Ces\`{a}ro 算子, Bergman型空间, Dirichlet 型空间, 有界性, 紧性
英文关键词:Composition Ces`aro operator, Bergman type space, Dirichlet type space, Boundedness, Compactness
基金项目:国家自然科学基金(No.11942109)和湖南省自然科学基金资助 (No.2022JJ30369)
Author NameAffiliation
GUO Yuting College of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China. 
ZHANG Xuejun Corresponding author. College of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China. 
Hits: 713
Download times: 1500
中文摘要:
      设 μ 是 [0, 1)上的正规函数,Bn 是 n 维复空间 Cn 上的单位球, ψ 是 Bn 上的一个全纯函数,? 是 Bn 上的全纯自映射. 作者考虑如下一种积分算子:T?,ψ(f)(z) =Z01f[?(tz)]Rψ(tz)dt/t, z ∈ Bn.作者主要刻画了正规权Dirichlet型空间Dpμ(Bnn) (0 < p ≤ 1) 上 T?,ψ 的有界性和紧性.同时, 本文利用Carleson 方块和Bergman球的测度讨论了正规权Bergman型空间Apμ(Bn) 到 Dpμ(Bn) (p > 0)的同样问题. 对讨论的情形本文均给出了充要条件.
英文摘要:
      Let μ be a normal function on [0, 1) and Bn be the unit ball in n dimensions complex space Cn. Suppose that ψ is a holomorphic function on Bn and ? is a holomorphic self-map of Bn. The authors consider a kind of integral operator as follows:T?,ψ(f)(z) =Z01f[?(tz)]Rψ(tz)dt/t, z ∈ Bn.The authors mainly characterize the boundedness and compactness of T?,ψ on the normal weight Dirichlet type space Dpμ(Bnn) (0 < p ≤ 1) At the same time, the authors discuss the same problem from the normal weight Bergman space Apμ(Bn) to Dpμ(Bn) (p > 0) by measures on Carleson square and Bergman ball. Necessary and sufficient conditions are given for all the cases discussed.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.