魏慧娟,单远,王婧.刘维尔底频的解析拟周期三维斜对称线性系统的可约性*[J].数学年刊A辑,2023,44(3):267~284
刘维尔底频的解析拟周期三维斜对称线性系统的可约性*
Reducibility of Analytic Quasi-periodic Three-Dimensional Skew Symmetric Linear Systems with Liouvillean Base Frequencies
Received:September 18, 2022  Revised:April 17, 2023
DOI:10.16205/j.cnki.cama.2023.0019
中文关键词:  可约性, 拟周期, 刘维尔, 斜对称
英文关键词:Reducibility, Quasi-periodic, Liouvillean, Skew symmetric
基金项目:国家重点研发计划项目(No.2021YFA1001600), 国家自然科学基金(No.11971233),江苏省自然科学基金项目(No.BK20200074)和青蓝工程项目的资助.
Author NameAffiliation
WEI Huijuan School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China. 
SHAN Yuan Corresponding author. School of Mathematics, Nanjing Audit University, Nanjing 210029, China. 
WANG Jing School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China. 
Hits: 950
Download times: 1399
中文摘要:
      文章主要研究一类具有刘维尔底频的解析拟周期三维斜对称线性系统的可约性.作者构造了一类三维刘维尔频率(含超刘维尔频率), 证明了在一定的非退化条件下,当扰动足够小时该类底频系统的正测旋转可约性.
英文摘要:
      In this paper, the authors mainly consider the reducibility of the analytic quasiperiodic three-dimensional skew symmetric linear systems with a class of Liouvillean base frequencies. The authors construct a class of three-dimensional Liouvillean frequencies (including super-Liouvillean frequencies), and the authors prove that under certain nonresonant conditions the system with this kind of base frequencies is rotational reducible with positive Lebesgue measure, provided that the perturbation is small enough.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.