程雪,李春和.带有平面边界凸曲面的无穷小刚性对偶问题的可解性*[J].数学年刊A辑,2023,44(4):353~362
带有平面边界凸曲面的无穷小刚性对偶问题的可解性*
Solvability of Infinitesimal Rigidity Dual Problem of Convex Surfaces with Planar Boundary
Received:December 21, 2022  Revised:June 20, 2023
DOI:10.16205/j.cnki.cama.2023.0025
中文关键词:  平面边界, 对偶问题, 凸曲面, 无穷小刚性
英文关键词:Planar boundary, Dual problem, Convex surface, Infinitesimal rigidity
基金项目:国家自然科学基金面上项目(No.12071059)和四川省中央引导地方科技发展专项(No.2021 ZYD0014)
Author NameAffiliation
CHENG Xue School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China. 
LI Chunhe School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China. 
Hits: 808
Download times: 1799
中文摘要:
      本文重新讨论了一类带有平面边界的凸曲面的无穷小刚性问题.找到该线性化等距嵌入系统和齐次线性化Gauss-Codazzi系统之间的对偶关系.主要找到了齐次线性等距嵌入系统的对偶问题及对偶边界条件,并证明了其具有非平凡解, 再次验证了该类凸曲面具有无穷小非刚性.
英文摘要:
      This paper revisits the infinitesimal rigidity of a class of convex surfaces with planar boundary. A dual relation between this linearized isometric embedding system and the homogeneous linearized Gauss-Codazzi system is found. Mainly the dual problem and dual boundary condition of the homogeneous linear isometric embedded system is found,and its nontrivial solution is solved. Then the authors proved its infinitesimal nonrigidity again.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.