ZHANG Xin'an,CHEN Lansun,LIANG Zhaojun.[J].数学年刊A辑,1999,20(2):185~194
GLOBAL TOPOLOGICAL PROPERTIES OF HOMOGENEOUS VECTOR FIELDS IN {\tf R}$^{^{\hbox{\normal 3}}}$
Received:September 08, 1997  Revised:September 29, 1998
DOI:
中文关键词:  
英文关键词:Tangent vector field, Invariant cone, Global topological equivalence
基金项目:
Author NameAffiliation
ZHANG Xin'an Institute of Mathematics, Academia Sinica, Beijing 100080, China
Department of Mathematics, Central China Normal University,Wuhan 430079, China 
CHEN Lansun Institute of Mathematics, Academia Sinica, Beijing 100080, China 
LIANG Zhaojun Department of Mathematics, Central China Normal University, Wuhan 430079, China 
Hits: 426
Download times: 0
中文摘要:
      
英文摘要:
      In this paper, the authors prove that the flows of homogeneous vector field $Q(x)$ at infinity are topologically equivalent to the flows of the tangent vector field $Q_T(u)$ $(u\in S^2)$ on the sphere $S^2$, and show the theorems for the global topological classification of $Q(x)$. They derive the necessary and sufficient conditions for the global asymptotic stability and the boundedness of vector field $Q(x),$ and obtain the criterion for the global topological equivalence of two homogeneous vector fields.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.