CHENG Jin,Masahiro YAMAMOTO,ZHOU Qi.[J].数学年刊A辑,1999,20(4):385~392
UNIQUE CONTINUATION ON A HYPERPLANE FORWAVE EQUATION
Received:May 17, 1999  
DOI:
中文关键词:  
英文关键词:Unique continuation, Hyperplane, Wave operator, Localized Fourier-Gauss,transform
基金项目:
Author NameAffiliationE-mail
CHENG Jin Fudan University, Shanghai 200433, China jcheng@fudan.edu.cn 
Masahiro YAMAMOTO Graduate School of Mathematical Sciences,The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo153, Japan myama@ms.u-tokyo.ac.jp 
ZHOU Qi Graduate School of Mathematical Sciences,The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo153, Japan qzhou@ms.u-tokyo.ac.jp 
Hits: 495
Download times: 0
中文摘要:
      
英文摘要:
      One kind of unique continuation property for a wave equation is discussed. The authors show that, if one classical solution of the wave equation vanishes in an open set on a hyperplane, then it must vanish in a larger set on this hyperplane. The result can be viewed as a localized version of Robbiano's result$^{[9]}$. The approach involves the localized Fourier-Gauss transformation and unique continuation on a line in the Laplace equation.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.