WANG YUAN,YU KUNRUI.[J].数学年刊A辑,1981,2(1):1~12 |
|
A NOTE ON SOME METRICAL THEOREMS INDIOPHANTINE APPROXIMATION |
Received:May 28, 1980 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 515 |
Download times: 0 |
中文摘要: |
|
英文摘要: |
本文证明了两条关于丢番图逼近论中的测度定理.(详细叙迷见本文1)这些定理
是P.X.Gallagher定理的改进,并包有W.M.Schmidt的测度定理.还可以导出,例如:
1.对于几乎有的\[({\theta _1},...,{\theta _n}) \in {R_n}\],适合于
\[\prod\limits_{i = 1}^n {\left\| {q{\theta _i}} \right\|} q{(\log {\kern 1pt} {\kern 1pt} {\kern 1pt} q)^n} < 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 1 \leqslant q \leqslant h\]
的整数q的个数为
\[\frac{{{2^n}}}{{(n - 1)!}}\log \log h + O({(\log \log h)^{1/2 + \varepsilon }}\] .
此处||X||表示实数X至最近整数的距离,\[\varepsilon \]为任意正常数,而与“О”有关的常数依赖于\[\varepsilon \]
与诸\[\theta \]
2 W. M. Schmidt与王元的转换定理中的性质2奋于几乎所有的\[({\theta _{11}},...,{\theta _{nm}}) \in {R_{nm}}\]都成立. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|