WANG YUAN,YU KUNRUI.[J].数学年刊A辑,1981,2(1):1~12
A NOTE ON SOME METRICAL THEOREMS INDIOPHANTINE APPROXIMATION
Received:May 28, 1980  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
WANG YUAN Institute of Mathematics, Academia Sinica 
YU KUNRUI Institute of Mathematics, Academia Sinica 
Hits: 515
Download times: 0
中文摘要:
      
英文摘要:
      本文证明了两条关于丢番图逼近论中的测度定理.(详细叙迷见本文1)这些定理 是P.X.Gallagher定理的改进,并包有W.M.Schmidt的测度定理.还可以导出,例如: 1.对于几乎有的\[({\theta _1},...,{\theta _n}) \in {R_n}\],适合于 \[\prod\limits_{i = 1}^n {\left\| {q{\theta _i}} \right\|} q{(\log {\kern 1pt} {\kern 1pt} {\kern 1pt} q)^n} < 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 1 \leqslant q \leqslant h\] 的整数q的个数为 \[\frac{{{2^n}}}{{(n - 1)!}}\log \log h + O({(\log \log h)^{1/2 + \varepsilon }}\] . 此处||X||表示实数X至最近整数的距离,\[\varepsilon \]为任意正常数,而与“О”有关的常数依赖于\[\varepsilon \] 与诸\[\theta \] 2 W. M. Schmidt与王元的转换定理中的性质2奋于几乎所有的\[({\theta _{11}},...,{\theta _{nm}}) \in {R_{nm}}\]都成立.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.