WANG JIAGANG.[J].数学年刊A辑,1981,2(1):13~20
THE UNIFORM INTEGRABILITY OF A CLASSOF EXPONENTIAL MARTINGALES
Received:December 25, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
WANG JIAGANG Fudan University 
Hits: 587
Download times: 0
中文摘要:
      
英文摘要:
      若说\[(\Omega ,\mathcal{F},P)\]为完备概率空间,\[F = {({\mathcal{F}_t})_{t \in [a,b]}}\]为\[\mathcal{F}\]的递增子\[\sigma \]域族,且满足通常 条件,\[b \leqslant \infty \].又\[W = \{ {W_t},0 \leqslant t \leqslant b\} \]为关于F的Wiener过程,\[X = \{ {X_t},0 \leqslant t < b\} \]为 循序讨测过程,且 \[P\{ \int_0^b {X_t^2} dt < \infty \} = 1\], 则可定义X关于W的Ito随机积分 \[{(X \cdot W)_t} = \int_0^t {{X_s}} d{W_s},0 \leqslant t \leqslant b\] 这时若记 \[{Z_t} = \exp \{ \int_0^t {{X_s}} d{W_s} - \frac{1}{2}\int_0^t {{X_s}^2} ds\} \] 它便是一个指数(局部)鞅.本文的目的在于证明当X为循序可测正态过程时,只要X关于W的积分存在,\[{\text{\{ }}{Z_t}0 \leqslant {\text{t < b\} }}\]总是一致可积的。 引理1若\[\{ {Z_t},0 \leqslant t < b\} \]为实可测正态过程且 \[\int_0^{\text{b}} {\left\| {{X_t}} \right\|} d{m_t} < \infty \] 其中\[\left\| {{X_t}} \right\| = {(E|{X_t}{|^2})^{1/2}}\],\[{m_t}\]为[0,b)上右连续递增函数,则X的几乎所有样本函数关于\[{m_t}\]可积,且其轨道积分 \[\tilde I = \int_0^{\text{b}} {{X_t}} d{m_t}\] 为正态分布随机变量. 引理2若\[X = \{ {X_t},0 \leqslant t < b\} \]为可测正态过程,其几乎所有样本函数关于右连续增函数\[{m_t}\]可积,即 \[P(\int_0^b {|{X_t}} |d{m_t} < \infty ) = 1\] 则按轨道积分 \[\tilde I = \int_0^{\text{b}} {{X_t}} d{m_t}\] 是正态分布随机变量. 引理3 若\[\{ {\xi _n},n \geqslant 1\} \]为正态分布随机变量序列,则 \[\sum\limits_{j = 1}^\infty {E{\xi _i}^2} \leqslant {[Eexp( - \frac{1}{2}\sum\limits_{j = 1}^\infty {{\xi _i}^2} )]^{ - 2}}\] 进而若\[\sum\limits_{j = 1}^\infty {E{\xi _i}^2} < 1\],则 \[E[exp(\frac{1}{2}\sum\limits_{j = 1}^\infty {{\xi _i}^2} )] \leqslant {(1 - \sum\limits_{j = 1}^\infty {E{\xi _i}^2} )^{ - \frac{1}{2}}}\] 引理4若\[{m_s}\]为[0, b)上右连续增函数,又\[X = \{ X_t^{(i)},0 \leqslant t < b,1 \leqslant i < \infty \} \]为正态 过程,则当\[P\{ \sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_t}} } < \infty \} = 1\]时必有 \[\sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_t}} } < \infty \} = 1\] 进而若;\[\sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_t}} } < 1\],必有 \[Eexp(\frac{1}{2}\sum\limits_{i = 1}^\infty {\int_0^b {{{({X_t}^{(i)})}^2}d{m_s}} } ) \leqslant {(1 - \sum\limits_{j = 1}^\infty {E\int_0^b {{{({X_t}^{(i)})}^2}d{m_s}} } )^{ - \frac{1}{2}}}\] 定理 若\[W = (W_t^{(1)},...,W_t^{(n)},...)\]为一个具有无限个分量的过程,其分量都是连续 正态独立增量过程且满足 \[\begin{gathered} E\{ W_t^{(i)} - W_s^{(i)}\} = 0 \hfill \ E\{ (W_t^{(i)} - W_s^{(i)})(W_t^{(j)} - W_s^{(j)})\} = {\delta _{ij}}(m_t^{(i)} - m_s^{(i)}) \hfill \\ \end{gathered} \] 又\[\{ {f_t} = (f_t^{(1)},...,f_t^{(n)},...)\} \]为循序可测正态过程,若 \[P\{ \sum\limits_{i = 1}^\infty {\int_0^b {{{({f_t}^{(i)})}^2}dm_t^{(i)}} } < \infty \} = 1\] 则 \[{Z_t} = \exp \{ \sum\limits_{i = 1}^\infty {\int_0^b {{f_s}^{(i)}dW_s^{(i)} - \frac{1}{2}\int_0^t {{{({f_s}^{(i)})}^2}dm_s^{(i)}} } } \} ,0 \leqslant t < b\] 是一致可积鞅,特别有\[E{Z_0} = 1\] 利用上述结果及正态过程的Hida-Cramer分解,可以象[1]一样方便地讨论正态测 度的等价性问题并求出其Radon-Nikodym导数.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.