Li DAQIAN,YU WENCHI,SEEN WEIXI.[J].数学年刊A辑,1981,2(1):65~90
SECOND INITIAL-BOUNDARY VALUE PROBLEMS FORQUASI-LINEAR HYPERBOLIC-PARABOLICCOUPLED SYSTEMS
Received:December 25, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
Li DAQIAN Fudan University 
YU WENCHI Fudan University 
SEEN WEIXI Fudan University 
Hits: 498
Download times: 0
中文摘要:
      
英文摘要:
      On a rectangular domain \[R(\delta ) = \{ 0 \leqslant t \leqslant \delta ,0 \leqslant x \leqslant 1\} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)\] We consider the second initial-boundary value problem for the quasi-linear hyperbolic- parabolic coupled system \[{\begin{array}{*{20}{c}} {\sum\limits_{j = 1}^n {{\zeta _{ij}}(t,x,u,v)(\frac{{\partial {u_j}}}{{\partial t}} + {\lambda _l}(t,x,u,v,{v_x})\frac{{\partial {u_j}}}{{\partial x}})} } \\ { = {\zeta _l}(t,x,u,v)(\frac{{\partial v}}{{\partial t}} + {\lambda _l}(t,x,u,v,{v_x})\frac{{\partial v}}{{\partial x}})} \\ { + {\mu _l}(t,x,u,v,{v_x}),(l = 1,...,n)} \\ {\frac{{\partial v}}{{\partial t}} - a(t,x,u,v,{v_x})\frac{{{\partial ^2}v}}{{\partial {x^2}}} = b(t,x,u,v,{v_x})} \end{array}}\] without loss of generatity,the initial conditions may be written as \[t = 0,{u_j} = 0,(j = 1,...,n),v = 0\] and we can suppose that \[\left\{ {\begin{array}{*{20}{c}} {a(0,x,0,0,0) \equiv 1} \\ {b(0,x,0,0,0) \equiv 0} \\ {{\zeta _{ij}}(0,x,0,0) \equiv {\delta _{lj}} = \left\{ {\begin{array}{*{20}{c}} {1,if{\kern 1pt} {\kern 1pt} {\kern 1pt} l = j} \\ {0,if{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l \ne j} \end{array}} \right.} \end{array}} \right.\] The boundary conditions are as follows: \[\begin{gathered} on{\kern 1pt} {\kern 1pt} {\kern 1pt} x = 1,\left\{ {\begin{array}{*{20}{c}} {{u_{\bar r}} = {G_{\bar r}}(t,u,v),(\bar r = 1,...,h;h \leqslant n)} \\ {\frac{{\partial v}}{{\partial x}} = {F_ + }(t,u,v);} \end{array}} \right. \hfill \ on{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ {\begin{array}{*{20}{c}} {{u_{\hat s}} = {{\hat G}_{\hat s}}(t,u,v),(\hat s = m + 1,...,n;m \geqslant 0)} \\ {\frac{{\partial v}}{{\partial x}} = {F_ - }(t,u,v){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \end{array}} \right. \hfill \\ \end{gathered} \] Uf = Q-f(t> u, x), (r = 1> k^n), We assume that the following conditions are satisfied: (1) the orientability condition \[\begin{gathered} {\lambda _{\bar r}}(0,1,0,0,0) < 0,{\lambda _s}(0,1,0,0,0) > 0,\left( {\begin{array}{*{20}{c}} {\bar r = 1,...,h} \\ {s = h + 1,...,n} \end{array}} \right) \hfill \ {\lambda _{\bar r}}(0,0,0,0,0) < 0,{\lambda _{\hat s}}(0,0,0,0,0) > 0,\left( {\begin{array}{*{20}{c}} {\hat r = 1,...,m} \\ {\hat s = m + 1,...,n} \end{array}} \right) \hfill \\ \end{gathered} \] (2) the compatibility condition \[\begin{gathered} \frac{{\partial {G_{\bar r}}}}{{\partial t}}(0,0,0) + \sum\limits_{j = 1}^n {\frac{{\partial {G_{\bar r}}}}{{\partial {u_j}}}} (0,0,0){\mu _j}(0,1,0,0,0) = {\mu _{\bar r}}(0,1,0,0,0) \hfill \ \frac{{\partial {{\hat G}_{\hat s}}}}{{\partial t}}(0,0,0) + \sum\limits_{j = 1}^n {\frac{{\partial {{\hat G}_{\hat s}}}}{{\partial {u_j}}}} (0,0,0){\mu _j}(0,0,0,0,0) = {\mu _{\hat s}}(0,0,0,0,0) \hfill \ (\bar r = 1,...,h;\hat s = m + 1,...,n);{F_ \pm }(0,0,0) = 0 \hfill \\ \end{gathered} \] (3) the condition of characterizing number \[\begin{gathered} \sum\limits_{j = 1}^n {\left| {\frac{{\partial {G_{\bar r}}}}{{\partial {u_j}}}(0,0,0)} \right|} < 1 \hfill \ \sum\limits_{j = 1}^n {\left| {\frac{{\partial {{\hat G}_{\hat s}}}}{{\partial {u_j}}}(0,0,0)} \right|} < 1(\bar r = 1,...,h,\hat s = m + 1,...,n \hfill \\ \end{gathered} \] (4)The smoothness condition: the coefficients of the system and the boundary conditions are suitably smooth. By means of certain a priori estimations for the solution of the heat equation and the linear hyperbolic system, using an iteration method and Leray-Schauder fixed point theorem, we have proved Theorem 1. Under the preceding hypotheses, for the second initial-boundary value problem (2)—(4), (6), (7), there exists uniquely a classical solution on R(8) where \[\delta \]>0 is suitably small. Theorem 2. In theorem the 1,condition of characterizing number (13) may be ameliorated as the following solvable condition; \[\left\{ {\begin{array}{*{20}{c}} {\det |({\delta _{\bar rr'}} - \frac{{\partial {G_{\bar r}}}}{{\partial {u_{r'}}}}(0,0,0)| \ne 0,(\bar r,r' = 1,...,h)} \\ {\det |({\delta _{\hat s\hat s'}} - \frac{{\partial {G_{\hat s}}}}{{\partial {u_{\hat s'}}}}(0,0,0)| \ne 0,(\hat s,\hat s' = m + 1,...,n)} \end{array}} \right.\] i.e,the boundary condition (6),(7)may be written as \[\begin{gathered} on{\kern 1pt} {\kern 1pt} {\kern 1pt} x = 1,\left\{ {\begin{array}{*{20}{c}} {{u_{\bar r}} = {H_{\bar r}}(t,{u_s},v),} \\ {\frac{{\partial v}}{{\partial x}} = {F_ + }(t,u,v);} \end{array}} \right.\left( {\begin{array}{*{20}{c}} {\bar r = 1,...,h} \\ {s = h + 1,...,n} \end{array}} \right) \hfill \ on{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ {\begin{array}{*{20}{c}} {{u_{\hat s}} = {H_{\hat s}}(t,{u_{\hat r}},v){\kern 1pt} ,} \\ {\frac{{\partial v}}{{\partial x}} = {F_ - }(t,u,v){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \end{array}} \right.\left( {\begin{array}{*{20}{c}} {\hat r = 1,...,m} \\ {\hat s = m + 1,...,n} \end{array}} \right) \hfill \\ \end{gathered} \]
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.