Li YISHEN.[J].数学年刊A辑,1981,2(2):147~156 |
|
ONE SPECIAL INVERSE PROBLEM OF THESECOND ORDER DIFFERENTIAL EQUATIONON THE WHOLE REAL AXIS |
Received:January 21, 1980 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 444 |
Download times: 542 |
中文摘要: |
|
英文摘要: |
为了解轴对称的KDV方程要考虑以下问题
\[\begin{gathered}
- {\varphi ^{''}}(x,\lambda ) + Q(x)\varphi (x,\lambda ) = \lambda \varphi (x,\lambda )( - \infty < x < \infty ) \hfill \ Q(x) = x + q(x) \hfill \\
\end{gathered} \]
BNOX[2]曾考虑以上二端奇型反问题,他指出函数Q(X)以一可由2\[ \times \]2的谱矩阵来确定. 本文指出当Q(x)=x+q(x),而q(x)满足以下条件时
\[q(x) \in {C^1}( - \infty ,\infty ),\int_{ - \infty }^\infty {|{s^i}} q(s)|ds < \infty ,i = 0,1,\]
则函数q(x)可由—个谱函数来确定,在\[\zeta 1\]我们引进黎曼函数证明了函数\[{\varphi _0}(x,\lambda )\]和 \[\varphi (x,\lambda )\]间变换的存在性,其中\[{\varphi _0}(x,\lambda ) = - \sqrt \pi Ai(x - \lambda )\] 是方程(0,1)当Q(x)=x时的
解,\[\varphi (x,\lambda )\]是方程(0.1)当Q(x)=x+q(x)时的解,在\[\zeta 2\]中,根据Titchmarsh-Kodaira理论给出对一个谱函数的完备性.最后推导出类似于Gel'fand-Levitan方程. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|