Li YISHEN.[J].数学年刊A辑,1981,2(2):147~156
ONE SPECIAL INVERSE PROBLEM OF THESECOND ORDER DIFFERENTIAL EQUATIONON THE WHOLE REAL AXIS
Received:January 21, 1980  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
Li YISHEN University of Science and Technology of China 
Hits: 444
Download times: 542
中文摘要:
      
英文摘要:
      为了解轴对称的KDV方程要考虑以下问题 \[\begin{gathered} - {\varphi ^{''}}(x,\lambda ) + Q(x)\varphi (x,\lambda ) = \lambda \varphi (x,\lambda )( - \infty < x < \infty ) \hfill \ Q(x) = x + q(x) \hfill \\ \end{gathered} \] BNOX[2]曾考虑以上二端奇型反问题,他指出函数Q(X)以一可由2\[ \times \]2的谱矩阵来确定. 本文指出当Q(x)=x+q(x),而q(x)满足以下条件时 \[q(x) \in {C^1}( - \infty ,\infty ),\int_{ - \infty }^\infty {|{s^i}} q(s)|ds < \infty ,i = 0,1,\] 则函数q(x)可由—个谱函数来确定,在\[\zeta 1\]我们引进黎曼函数证明了函数\[{\varphi _0}(x,\lambda )\]和 \[\varphi (x,\lambda )\]间变换的存在性,其中\[{\varphi _0}(x,\lambda ) = - \sqrt \pi Ai(x - \lambda )\] 是方程(0,1)当Q(x)=x时的 解,\[\varphi (x,\lambda )\]是方程(0.1)当Q(x)=x+q(x)时的解,在\[\zeta 2\]中,根据Titchmarsh-Kodaira理论给出对一个谱函数的完备性.最后推导出类似于Gel'fand-Levitan方程.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.