ZHANG YINNAN.[J].数学年刊A辑,1981,2(2):217~224
ON THE NECESSARY AND SUFFICIENT CONDITION OFTHE EXISTENCE OF QUASI INVARIANT MEASURES
Received:December 20, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
ZHANG YINNAN Research Institute of Mathematics, Fudan University 
Hits: 406
Download times: 566
中文摘要:
      
英文摘要:
      If E is a separable type-2 Banach space and Esub<0>sub is a linear subspace of E, then the following are equivalent: (a) There exists a probability measure \[\mu \] on E, Which is \[{E_{\text{0}}}\]-quasi-invariant. (b) There exists a sequence \[({X_n}) \subset E\] such that \[\sum {{e_n}(\omega ){X_n}} \] converges a.s., where \[{{e_n}(\omega )}\] are indepondend identically distributed symmetric stable random variables of index 2,i,e.\[E(\exp (it{\kern 1pt} {\kern 1pt} {e_n}(\omega ))) = exp( - \frac{{{t^2}}}{2})\]for all real t, and \[{E_{\text{0}}} \subset \{ x,x = \sum {{\lambda _n}{X_n}} ,\forall ({\lambda _n}) \in {l_2}\} \] In this note we prove that \[\sum {{\lambda _n}{X_n}} \] is convergent.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.