ZHANG YINNAN.[J].数学年刊A辑,1981,2(2):217~224 |
|
ON THE NECESSARY AND SUFFICIENT CONDITION OFTHE EXISTENCE OF QUASI INVARIANT MEASURES |
Received:December 20, 1979 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 406 |
Download times: 566 |
中文摘要: |
|
英文摘要: |
If E is a separable type-2 Banach space and Esub<0>sub is a linear subspace of E, then the following are equivalent:
(a) There exists a probability measure \[\mu \] on E, Which is \[{E_{\text{0}}}\]-quasi-invariant.
(b) There exists a sequence \[({X_n}) \subset E\] such that \[\sum {{e_n}(\omega ){X_n}} \] converges a.s., where \[{{e_n}(\omega )}\] are indepondend identically distributed symmetric stable random variables of
index 2,i,e.\[E(\exp (it{\kern 1pt} {\kern 1pt} {e_n}(\omega ))) = exp( - \frac{{{t^2}}}{2})\]for all real t, and
\[{E_{\text{0}}} \subset \{ x,x = \sum {{\lambda _n}{X_n}} ,\forall ({\lambda _n}) \in {l_2}\} \]
In this note we prove that \[\sum {{\lambda _n}{X_n}} \] is convergent. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|