He BAIHE.[J].数学年刊A辑,1981,2(2):233~242
CONTINUOUS MAPPING FROM SPHERESTO EUCLIDEAN SPACES
Received:December 14, 1979  
DOI:
中文关键词:  
英文关键词:
基金项目:
Author NameAffiliation
He BAIHE Institute of Mathematics, Jilin Universtity 
Hits: 576
Download times: 618
中文摘要:
      
英文摘要:
      In the forties Knaster, B., posed the following problem: Gieven a continuous mapping f of an (m+n-2) sphere \({S^{m + n - 2}}\) into the Euclidean m -space \({R^m}\) and n distinct points it \({u_1}, \cdots {u_n}\) of \({S^{m + n - 2}}\); does there exist a rotation r such that \[f(r{u_1}) = \cdots = f(r{u_n})?\] In this paper, the index under periodic transfromation of StieM manifold is applied to prove the following theorem: Given a continuous mapping \(f:{S^{k - 1}} \to {R^m}\), n distinct points \({u_1}, \cdots {u_n} \in {S^{k - 1}}\) viewed as unit vectors satisfying \({u_i}{u_j} = {u_{i + 1}}{u_{j + 1}},i,j \in {I_n}\), and suppose\({u_1}, \cdots {u_n}\) have rank l, then in each of the following cases, there is a!rotation r such that \[f(r{u_1}) = \cdots = f(r{u_n})\] 1. \[n \ne 2,3,k - 1 = (n - 1)m\]; 2. n is an odd prime number, l even,\[k - 1 = \left[ {\frac{{(n - 1)m}}{2}} \right] + l - 2\]; 3. n is an odd prime number, l odd, \[l \ge \left[ {\frac{{(n - 1)m}}{2}} \right] + 1,k - 1 = \left[ {\frac{{(n - 1)m}}{2}} \right] + l - 2;\] 4. n is an odd prime number, l odd, \[l < \left[ {\frac{{(n - 1)m}}{2}} \right] + 1,k - 1 = (n - 1)m + 1;\] where [*] is the least even number>*. This theorem generalizes the classical Borsuk-Ulam theorem.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.