Cao Jiading.[J].数学年刊A辑,1981,2(2):243~255 |
|
ON THE GENERALIZED POLYNOMIALS OF L. V.KANTOROVITCH AND THEIR ASYMPTOTIC BEHAVIORS |
Received:December 26, 1979 |
DOI: |
中文关键词: |
英文关键词: |
基金项目: |
|
Hits: 454 |
Download times: 550 |
中文摘要: |
|
英文摘要: |
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l}
(a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b).
\end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let
\[\begin{array}{l}
{\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}.
\end{array}\]
We have proved the following results:
Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}}
{a \le x \le b}\{a \le z \le b}
\end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\).
Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\] |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|