| 李红玉,孙经先,崔玉军.测度链上的非线性微分方程的正解[J].数学年刊A辑,2009,30(1):97~106 |
| 测度链上的非线性微分方程的正解 |
| Positive Solutions of Nonlinear Differential Equations on a Measure Chain |
| |
| DOI: |
| 中文关键词: 测度链上的非线性微分方程 正解 不动点指数 锥 |
| 英文关键词:Nonlinear differential equations on a measure chain, Positive
solution, Fixed point index, Cone |
| 基金项目:国家自然科学基金,山东科技大学科学研究春蕾计划 |
| Author Name | Affiliation | E-mail | | LI Hongyu | College of Information Science and Engineering, Shandong University of Science
And Technology, Qingdao 266510, Shandong, China. | sdlhy1978@163.com | | SUN Jingxian | Department of Mathematics, Xuzhou Normal University, Xuzhou 221116,
Jiangsu, China. | jxsun7083@sohu.com | | CUI Yujun | College of Information Science and Engineering, Shandong University of Science
And Technology, Qingdao 266510, Shandong, China. | cyj720201@163.com |
|
| Hits: 801 |
| Download times: 803 |
| 中文摘要: |
| 应用锥理论和不动点指数方法,在与相应的线性算子第一特征值有关的条件下,获得了测度链上的非线性微分方程Lx(t)=-[r(t)x△(t)△=f(t,x(σ(t)))的正解的存在性. |
| 英文摘要: |
| By applying the theory of fixed point index and the cone theory, the existence
of positive solutions for the nonlinear differential equation on a measure chain Lx(t) =
?[r(t)x△(t)]△ = f(t, x( (t))) is considered under some conditions concerning the first eigen-
value corresponding to the relevant linear operator. |
| View Full Text View/Add Comment Download reader |
| Close |
|
|
|
|
|