李红玉,孙经先,崔玉军.测度链上的非线性微分方程的正解[J].数学年刊A辑,2009,30(1):97~106
测度链上的非线性微分方程的正解
Positive Solutions of Nonlinear Differential Equations on a Measure Chain
  
DOI:
中文关键词:  测度链上的非线性微分方程  正解  不动点指数  
英文关键词:Nonlinear differential equations on a measure chain, Positive solution, Fixed point index, Cone
基金项目:国家自然科学基金,山东科技大学科学研究春蕾计划
Author NameAffiliationE-mail
LI Hongyu College of Information Science and Engineering, Shandong University of Science And Technology, Qingdao 266510, Shandong, China. sdlhy1978@163.com 
SUN Jingxian Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, Jiangsu, China. jxsun7083@sohu.com 
CUI Yujun College of Information Science and Engineering, Shandong University of Science And Technology, Qingdao 266510, Shandong, China. cyj720201@163.com 
Hits: 681
Download times: 718
中文摘要:
      应用锥理论和不动点指数方法,在与相应的线性算子第一特征值有关的条件下,获得了测度链上的非线性微分方程Lx(t)=-[r(t)x△(t)△=f(t,x(σ(t)))的正解的存在性.
英文摘要:
      By applying the theory of fixed point index and the cone theory, the existence of positive solutions for the nonlinear differential equation on a measure chain Lx(t) = ?[r(t)x△(t)]△ = f(t, x( (t))) is considered under some conditions concerning the first eigen- value corresponding to the relevant linear operator.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.