林寿,郑春燕.一类仿紧连通空间的几乎开映像[J].数学年刊A辑,2009,30(1):107~114
一类仿紧连通空间的几乎开映像
The Almost-Open Images of a Class of Connected Paracompact Spaces
  
DOI:
中文关键词:  连通空间  仿紧空间  Lasnev空间  M1空间  几乎开映射  闭映射
英文关键词:Connected spaces, Paracompact spaces, Laˇsnev spaces, M1-spaces, Almost-open mappings, Closed mappings
基金项目:国家自然科学基金,宁德师范高等专科学校建设项目
Author NameAffiliationE-mail
LIN Shou Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, Fujian, China. Institute of Mathematics, Ningde Teachers’ College, Ningde 352100, Fujian, China. linshou@public.ndptt.fj.cn 
ZHENG Chunyan Institute of Mathematics, Ningde Teachers’ College, Ningde 352100, Fujian, China. zhengchunyan211@163.com 
Hits: 616
Download times: 674
中文摘要:
      讨论了包含仿紧连通空间的一些广义度量空间类的映射性质,证明了T1的连通第一可数空间是连通Lasnev空间的几乎开映像,部分回答了1998年Tkachuk关于连通空间逆像的一个问题;证明了T1的连通的具有点Gδ性质的空间是连通M1空间的几乎开映像,其中建立了M1空间的一个映射定理,回答了1976年Nyikos提出的一个问题.
英文摘要:
      In this paper the mapping properties about generalized metric spaces which are connected paracompact are discussed. It is shown that a T1 connected space with first countability is an almost-open image of a Laˇsnev connected space, which gives partial answers to a Tkachuk’s question on the preimages of connected spaces in 1998. It is also shown that a T1 connected space with point-G property is an almost-open image of a connectedM1-space, where a mapping theorem onM1-spaces is established and then answers the question posed by Nyikos P. J. in 1976.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.