Apr.13 Sun.2025
张芬,周泽华.单位球中解析函数Hilbert空间上的加权复合算子的伴随及其应用[J].数学年刊A辑,2009,30(2):153~160
单位球中解析函数Hilbert空间上的加权复合算子的伴随及其应用
Adjoints of Weighted Composition Operators on the Hilbert Spaces of Analytic Functions in the Unit Ball and Its Applications
  
DOI:
中文关键词:  加权复合算子  自伴性  对偶算子
英文关键词:Weighted composition operator, Self-adjointness, Adjoint operator
基金项目:国家自然科学基金
Author NameAffiliationE-mail
ZHANG Fen Department of Mathematics, Tianjin University, Tianjin 300072, China. rosezf@163.com 
ZHOU Zehua Department of Mathematics, Tianjin University, Tian- jin 300072, China. zehuazhou2003@yahoo.com.cn 
Hits: 645
Download times: 695
中文摘要:
      主要给出了具有再生核的解析函数Hilbert空间中由任意$\varphi$ 及$\psi$所导出的加权复合算子 的对偶算子的一般公式.在此基础上,得到了由一些特殊函数所导出的加权复合算子$C_{\varphi ,\psi }$的 对偶算子的更优美结果.最后还给出了加权Bergman空间中$C_{\varphi ,\psi }$自伴的充要条件.
英文摘要:
      This paper presents a general formula for the adjoint of a weighted composition operator available for all admissible $\varphi$ and $\psi$ in any Hilbert spaces of analytic functions with reproducing kernels. As the base of this, some improved explicit expressions for the adjoint of $C_{\varphi ,\psi }$ induced by specific $\varphi$ and $\psi$ are obtained, and the characterization for $C_{\varphi ,\psi }$ to be self-adjoint on the weighted Bergman space is also given.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.