徐庆华,刘太顺.正规化双全纯映照的增长和掩盖定理[J].数学年刊A辑,2009,30(2):213~220
正规化双全纯映照的增长和掩盖定理
On the Growth and Covering Theorem for Normalized Biholomorphic Mappings
  
DOI:
中文关键词:  k 1阶零点  增长和掩盖定理  β型螺形映照族及其子族
英文关键词:Zero of order k + 1, Growth and covering theorems, The class of spirallike mappings of type and its subclasses
基金项目:国家自然科学基金,教育部高等学校博士学科点专项科研基金,江西省自然科学基金,江西师范大学博士专项研究资助的项目
Author NameAffiliationE-mail
XU Qinghua College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China. xuqhster@gmail.com 
LIU Taishun Department of Mathematics, Huzhou Teacher’s College, Huzhou 313000, Zhe- jiang, China. lts@ustc.edu.cn 
Hits: 681
Download times: 670
中文摘要:
      在一般复Banach空间的单位球上引入正规化全纯映照族Mg,考虑满足条件(Df(x))-f(x)∈M9的正规化局部双全纯映照f(其中x=0是f(x)-x的k+1阶零点)并得到其增长和掩盖定理.所得结果统一和推广了许多已知结论.
英文摘要:
      Let $X$ be a complex Banach space with norm $\|\cdot\|$, $B$ be the unit ball in $X$. This introduces a class of holomorphic mappings $\widehat{\mathcal{M}_g}$ on $B$. Let $f(x)$ be a normalized locally biholomorphic mapping on $B$ such that $({\rm D}f(x))^{-1}f(x)\in \widehat{\mathcal{M}_g}$ and $f(x)-x$ has a zero of order $k+1$ at $x=0$. The growth and covering theorems for $f(x)$ are obtained. These results include and generalize many known results.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.