董浙,陶继成.算子空间的原子性[J].数学年刊A辑,2009,30(3):339~344
算子空间的原子性
Nuclearity of Operator Spaces
  
DOI:
中文关键词:  算子空间  原子  内射
英文关键词:Operator space, Nuclear, Injective
基金项目:国家自然科学基金,浙江省自然科学基金(No.Y606144)资助的项目
Author NameAffiliationE-mail
DONG Zhe Department of Mathematics, Zhejiang University, Hangzhou 310027, China. dongzhe@zju.edu.cn 
TAO Jicheng Department of Mathematics, China Jiliang University, Hangzhou 310018, China. taojc@cjlu.edu.cn 
Hits: 1144
Download times: 743
中文摘要:
      研究了算子空间的原子性.证明了算子空间V是原子当且仅当V是正合且有限内射; V内的任意一个有限维算子子空间是原子当且仅当V是原子且V内任意有限维算子子空间足V的完全补.因此作为推论,得到了无限维箅子空间V的任意有限维子空间是原子,则V是1-Hilbertian和1-齐次.
英文摘要:
      This paper studies the nuclearity for operator spaces. The authors show that an operator space V is nuclear if and only if V is exact and finitely injective, and also prove that every finite dimensional operator subspace in V is nuclear if and only if V is nuclear and every finite dimensional operator subspace in V is completely complement in V . As a corollary, it is obtained that if every finite dimensional subspace of an infinite dimensional operator space V is nuclear, then V is 1-Hilbertian and 1-homogeneous.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.