于秀源,沈忠华.连分数对数的线形型下界[J].数学年刊A辑,2009,30(3):353~358
连分数对数的线形型下界
The Lower Bound of the Linear Form of Logarithms of Continued Fractions
  
DOI:
中文关键词:  连分数  对数  线形型  下界
英文关键词:Continued fraction, Logarithm, Linear form, Lower bound
基金项目:国家自然科学基金,浙江省自然科学基金(No.103060)资助的项目
Author NameAffiliationE-mail
YU Xiuyuan Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China
Deprtment of Mathematics, Zhe Xi Branch of Zhejiang Industry Uni- versity, Quzhou 324000, Zhejiang, China. 
ahtshen@126.com 
SHEN Zhonghua Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China.  
Hits: 699
Download times: 738
中文摘要:
      给出了一类连分数的对致的线形型的下界估计:设{an是给定的正整致列,a与β是y=f(s)=alx+/1 a2x+/1…anx+/1 …在两个不同的正整数点的值,k和l是不全为零的整数,则存在常数c4,c6,使得|A|=|klog a+flog βI>c6exp(-c4Alog H),其中A=max{λ(μ(1ogH+1)+1),λ(μlogH+1)+2)}.
英文摘要:
      The lower bound of the linear form of logarithms of a class of continued fractions was given. Let $\{a_{n}\}$ be a given sequence of positive integers, $\alpha$ and $\beta$ be the values of $y=f(x)=\frac{1}{a_{1}x+}\frac{1}{a_{2}x+}\cdots\frac{1}{a_{n}x+}\cdots$ at two different positive integers respectively, $k$ and $l$ be different integers. Then there exist constants $c_{4}$, $c_{6}$, such that $$ \begin{array}{ll} |\Lambda|=|k\log{\alpha}+l\log{\beta}|>c_{6}\exp(-c_{4}A\log{H}), \end{array} $$ where $A=\max{\{\lambda(\mu^{*}(\log{H}+1)+1),\lambda(\mu^{*}(\log{H}+1)+2) }$\}.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.