刘树冬,方小春.纯无限单C*-代数的扩张代数的K-理论Ⅱ[J].数学年刊A辑,2009,30(3):433~438
纯无限单C*-代数的扩张代数的K-理论Ⅱ
K-Theory for Extensions of Purely Infinite Simple C*-algebras Ⅱ
  
DOI:
中文关键词:  C*-代数  扩张  K*理论  纯无限
英文关键词:
基金项目:国家自然科学基金,山东省自然科学基金(No.Y2006A03)资助的项目
Author NameAffiliationE-mail
LIU Shudong School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shan- dong, China. lshd008@163.com 
FANG Xiaochun Department of Mathematics, Tongji University, Shanghai 200092, China. xfang@mail.tongji.edu.cn 
Hits: 999
Download times: 752
中文摘要:
      给出了有单位元的纯无限单的C*-代数A通过K的扩张代数E的K-理论的一种刻画.证明了K0(E)同构于E中所有具有无限余投影的无限投影的Murry-yon Neumann等价类全体所成的交换群,它还同构于上述投影的同伦等价类或酉等价类全体所成的交换群.还证明了对扩张代数E中的任·满的正元a,存在元索z ∈E,使得x*ax=1,其中K为可分无限维Hilbert空间上紧算子全体所成的C*一代数.
英文摘要:
      This paper describes $K$-theory for C*-algebra $E$ which is the extension of a purely infinite simple C*-algebras $A$ by ${\k}$, the C*-algebra of all compact oprators on separable \linebreak infinite dimensional Hilbert space. It is proved that $K_0(E)$ is the group of all Murry-von Neumann equivalent classes of all infinite projections in $E$ with infinite complement projections, it is also equal to the group of all homotopy equivalent classes or unitary equivalent classes of the above projections. The authors also prove that for any full positive element $a\in E$, there exists an element $x\in E$, such that $x^*ax=1.$
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.