王林峰.加权Ricci流的非拟周期性[J].数学年刊A辑,2009,30(4):467~478
加权Ricci流的非拟周期性
No Breathers About the Weighted Ricci Flow
  
DOI:
中文关键词:  加权Ricci流  拟周期性  
英文关键词:Weighted Ricci flow, Breather, Entropy
基金项目:国家自然科学基金,江苏省高校自然科学基础研究面上项目,南通大学自然科学基金,南通大学博士科研基金(No.08804)资助的项目
Author NameAffiliationE-mail
WANG Linfeng School of Sciences, Nantong University, Nantong 226000, Jiangsu, China. wlf711178@126.com 
Hits: 789
Download times: 688
中文摘要:
      (M,g)是n维黎曼流形,h是M上的光滑函数,相应的加权测度为dμ(x)=eh(x)dV(x),m维Bakry-Emery曲率张量为Ricm,考虑了加权Ricci流(a)g/(a)t=-2Ricm,当流形是紧致时,排除了加权Ricci流的拟周期性,推广了紧致流形上Ricci流的相应结果.
英文摘要:
      Let $(M, g)$ be an $n$-dimensional Riemannian manifold, $h$ a smooth function on $M$, $\mathrm{d}\mu(x)=\rme^{h(x)}\mathrm{d}V(x)$ the weighted measure and $\mathrm{Ric}_m$ the $m$-dimensional Bakry-Emery curvature tensor. This paper considers the weighted Ricci flow $\frac{\partial g}{\partial t}=-2\mathrm{Ric}_m$ and rules out breathers about this flow when the manifold is compact, which generalizes the same result about Ricci flow on compact manifold.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.