张良才,施武杰,刘雪峰.L4(4)的非交换图刻画[J].数学年刊A辑,2009,30(4):517~524
L4(4)的非交换图刻画
A Characterization of L-4(4)by Its Noncommuting Graph
  
DOI:
中文关键词:  有限群  非交换图  AAM猜想  射影特殊线性单群
英文关键词:Finite group, Noncommuting graph, AAM’s conjecture, Projective special linear simple group
基金项目:国家自然科学基金,教育部新世纪优秀人才支持计划,重庆大学横向基金(No.104207520080834;NO.104207520080968)资助的项目
Author NameAffiliationE-mail
ZHANG Liangcai Corresponding author. College of Mathematics and Physics, Chongqing University, Chongqing 400044, China. zlc213@163.com 
SHI Wujie School of Mathematical Sciences, Suzhou University, Suzhou 215006, Jiangsu, China. wjshi@suda.edu.cn 
LIU Xuefeng School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. liuxuefengbj@163.com 
Hits: 822
Download times: 736
中文摘要:
      令G是一个有限非交换群.如下定义群G的非交换图▽(G):其顶点集是G\Z(G),任意两个顶点x和y相连的充要条件是[x,y]≠1.2006年, Abdollahi A.,Akbari S.和Maimani H.R.提出了如下猜想:若群G满足条件▽(G)≌▽(M),其中M是有限非交换单群,则G≌M.尽管该猜想对于具有非连通素图的有限单群以及交错群A10足成立的,但是人们仍不知道它对于除A10外的具有连通素图的有限单群是否成立.该文证明了上述猜想对于射影特殊线性单群L4(4)也是成立的.
英文摘要:
      Let $G$ be a nonabelian group and associate a noncommuting graph $\nabla(G)$ with $G$ as follows: The vertex set of $\nabla(G)$ is $G\backslash Z(G)$ with two vertices $x$ and $y$ joined by an edge whenever the commutator of $x$ and $y$ is not the identity. In 2006, Abdollahi A., Akbari S. and Maimani H. R. put forward a conjecture called AAM's Conjecture %in \cite {AAM} as follows: If $M$ is a finite nonabelian simple group and $G$ is a group such that $\nabla(G)\cong \nabla (M)$, then $G\cong M$. Even though this conjecture is known to hold for all simple groups with nonconnected prime graphs and the alternating group $A_{10}$, it is still unknown for all simple groups with connected prime graphs except $A_{10}$. It is proved that the conjecture is also true for the projective special linear simple group $L_{4}(4)$.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.