何忆捷.KdV方程纯孤立子解的整体渐近性质[J].数学年刊A辑,2009,30(5):659~668
KdV方程纯孤立子解的整体渐近性质
Global Asymptotic Behavior of Pure Soliton Solutions of the KdV Equation
  
DOI:
中文关键词:  KdV方程  反散射方法  N-孤立子解  整体渐近性
英文关键词:KdV equation, Inverse scattering method, N-soliton solution, Global asymptotic behavior
基金项目:
Author NameAffiliationE-mail
HE Yijie School of Mathematical Sciences, Fudan University, Shanghai 200433, China. 072018034@fudan.edu.cn 
Hits: 639
Download times: 839
中文摘要:
      研究KdV方程纯孤立子解的整体渐近性质,证明了N-孤立子解一致收敛到N个单孤立子解的叠加.进而得到了N-孤立子解在L1-范数意义下的渐近结果,并借此阐述了纯孤立子解与一般速降解的差异.
英文摘要:
      This paper studies the global asymptotic behavior of pure soliton solutions of the KdV equation and obtains the global uniform convergence of N-soliton solution to the linear superposition of N single solitons. Moreover, the asymptotic behavior of N-soliton solutions in L1-norm is also obtained, which demonstrates the difference between pure soliton solutions and general Schwartz solutions.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.