| 李艳涛,冯衍全.4p阶三度点传递图[J].数学年刊A辑,2009,30(5):677~684 |
| 4p阶三度点传递图 |
| Cubic Vertex-Transitive Graphs of Order 4p |
| |
| DOI: |
| 中文关键词: 对称图 点传递图 Cayley图 |
| 英文关键词:Symmetric graph, Vertex-transitive graph, Cayley graph |
| 基金项目:国家自然科学基金(No.10871021)资助的项目 |
|
| Hits: 825 |
| Download times: 847 |
| 中文摘要: |
| 一个图称为点传递图或对称图如果它的自同构群分别在点集或点集有序对上传递.设P为素数,给出了4p阶连通三度点传递图分类(徐明曜等在[Chin.Ann.Math.,2004,25B(4):545-554]中分类了4p阶连通三度对称图).确定了4p阶互不同构的连通三度点传递图的个数f(4p);当P=2,3,5,7时,f(4p)分别为2,4,8,6;当P≥11且4|(p-1)时,f(4p)=5+p-3/2,当P≥11且4|(p-1)时,f(4p)=3+p-3/2. |
| 英文摘要: |
| A graph is vertex-transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of the graph respectively.
Let $p$ be a prime. Xu et al. [Chin. Ann. Math., 2004, 25B(4):545--554] classified the connected cubic symmetric graphs of order $4p$.
This paper gives a classification of connected cubic vertex-transitive graphs of order $4p$. As a result, the number of pairwise
non-isomorphic connected cubic vertex-transitive graph of order $4p$ is $2$ for $p=2$, $4$ for $p=3$, $8$ for $p=5$, $6$ for $p=7$,
$5+\frac{p-3}{2}$ for $p\geq 11$ with $4 \mid (p-1)$ and $3+\frac{p-3}{2}$ for $p\geq 11$ with $4\nmid (p-1)$. |
| View Full Text View/Add Comment Download reader |
| Close |
|
|
|
|
|