杨晗,杨宁.Davey-Stewartson系统在低能量空间中的整体适定性[J].数学年刊A辑,2009,30(5):685~696
Davey-Stewartson系统在低能量空间中的整体适定性
Global Well-Posedness Results for Davey-Stewartson Systems Below the Energy Norm
  
DOI:
中文关键词:  Davey-Stewartson系统  整体适定性  Strichartz估计  Fourier截断方法
英文关键词:Davey-Stewartson systems, Global well-posedness, Strichartz estimates, Fourier truncation method
基金项目:国家自然科学基金,西南交通大学基础研究基金(No.2007B05)资助的项目
Author NameAffiliationE-mail
YANG Han College of Mathematics, Southwest Jiaotong University, Chengdu 610031, China. hanyang95@263.net 
YANG Ning College of Mathematics, Southwest Jiaotong University, Chengdu 610031, China. nyang@home.swjtu.edu.cn 
Hits: 579
Download times: 634
中文摘要:
      得到了具粗糙初值的Davey-Stewartson系统的整体适定性,具体地说,证明了当初值在Sobolev空间Hs(s>2/3)中的整体解的存在性,即解可能具有无限能量.证明的创新在于应用Bourgain提出的Fourier限制方法及分频技术,同时得到了解的Hs范数关于时间的增长可由一多项式函数控制.
英文摘要:
      The global well-posedness for the Davey-Stewartson systems is obtained with rough data. More precisely the authors show that a global solution exists for initial data in the Sobolev space $H^s$ and any $s>\frac{2}{3}$, then the initial data may have infinite energy. The new ingredient in the proof is to apply the Fourier restriction norm method of Bourgain by showing a generalized estimates of Strichartz type and splitting the data into low and high frequency parts. A byproduct of the method is that the $H^s$ norm of the solution obeys polynomial-in-time bounds.
View Full Text  View/Add Comment  Download reader
Close

Organizer:The Ministry of Education of China Sponsor:Fudan University Address:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn
Designed by Beijing E-Tiller Co.,Ltd.