杨新兵,方小春.Cantor极小动力系统生成交叉积C~*-代数的K_0群[J].数学年刊A辑,2010,31(1):119~128 |
Cantor极小动力系统生成交叉积C~*-代数的K_0群 |
K_0-Groups of Crossed Product C~*-Algebras Arising from Cantor Minimal Dynamical Systems |
|
DOI: |
中文关键词: Cantor极小系统 交叉积 拓扑全群 |
英文关键词:Cantor minimal dynamical system Crossed product Topological full group |
基金项目:国家自然科学基金(No.10771161)资助的项目 |
Author Name | Affiliation | E-mail | YANG Xinbing | Department of Mathematics, Zhejiang Normal University,Jinhua 321004, Zhejiang, China Department of Mathematics, Tongji University, Shanghai 200092, China. | yangxinbing@zjnu.cn | FANG Xiaochun | Department of Mathematics, Tongji University, Shanghai 200092,China. | xfang@mail.tongji.edu.cn |
|
Hits: 993 |
Download times: 866 |
中文摘要: |
设(X,α)为一个Cantor极小系统,C(X)×_αZ为相应的交叉积C~*-代数,U,V为X内的两个clopen集.证明了如果[j_α(1U)_0=[jα(1_v)]_0∈K_0(C(X)×_αZ),则存在α的一个拓扑全群元素σ,使得σ(U)=V. |
英文摘要: |
Let (X,α) be a Cantor minimal dynamical system,C(X) ×_αZ be the crossed product C~*-algebra arising from the Cantor minimal dynamical system and let U,V be two clopen subsets of X.This note shows that if[j_α(1u)]_0 =[j_α(1v)]_0 ∈ K_0(C(X) ×_α Z),then there exists a homeomorphism σ which belongs to the topological full group of α such that σ(U) =V. |
View Full Text View/Add Comment Download reader |
Close |
|
|
|
|
|